
Coons BVH for Freeform Geometric Models

Yong-Joon Kim1 Young-Taek Oh1 Seung-Hyun Yoon2 Myung-Soo Kim1∗ Gershon Elber3

1Seoul National University 2Dongguk University 3Technion

(a) (b)

Figure 1: (a) 10000 freeform geometric models (chess pieces) falling into a pile, where the same models share a common BVH of Coons
patches approximating the given freeform NURBS surfaces within an error bound 10−5, where the unit length is taken as the largest side
length of the minimum bounding box of the model, and (b) the minimum distance computation between a flying B58 model and a complex
dynamic scene with many Utah teapots falling to the playground.

Abstract

We present a compact representation for the bounding volume hi-
erarchy (BVH) of freeform NURBS surfaces using Coons patches.
Following the Coons construction, each subpatch can be bounded
very efficiently using the bilinear surface determined by the four
corners. The BVH of freeform surfaces is represented as a hierar-
chy of Coons patch approximation until the difference is reduced to
within a given error bound. Each leaf node contains a single Coons
patch, where a detailed BVH for the patch can be represented very
compactly using two lists (containing curve approximation errors)
of length proportional only to the height of the BVH. We demon-
strate the effectiveness of our compact BVH representation using
several experimental results from real-time applications in collision
detection and minimum distance computation for freeform models.

Keywords: Coons patch, freeform surface, bilinear surface,
NURBS, bounding volume hierarchy (BVH), tetrahedron, offset,
collision detection, minimum distance computation

Links: DL PDF

1 Introduction

Hierarchical spatial data structures play an essential role in the de-
sign of efficient geometric algorithms for three-dimensional ob-

∗Corresponding author; e-mail: mskim@snu.ac.kr

jects [Samet 2006]. Real-time algorithms for polygonal meshes
employ various different types of BVHs that are built in a pre-
processing stage of the geometric computation [Akenine-Möller et
al. 2008]. The BVH for a polygonal mesh usually requires a much
larger memory space compared to the original model itself [Yoon
and Manocha 2006]. Thus it is an important subject of research to
develop compact representations for BVH structures.

Freeform geometric models are more compact than polygonal
meshes. The BVH structure of freeform geometry can be gener-
ated by recursively subdividing the freeform surfaces [Johnson and
Cohen 1998]. Nevertheless, it is unclear, in general, where to stop
the recursive subdivision and how to proceed with the geometric
computation when we reach the leaf level. In this paper, we ad-
dress these two important issues and propose a compact BVH con-
struction scheme for freeform geometry that is based on the special
structure of the Coons patch.

The Coons patch is one of the earliest freeform representation
schemes in CAGD and was developed in the early 1960’s [Coons
1964]. (For an introduction to Coons patches, see Chapter 14 of
[Cohen et al. 2001] and Chapter 22 of [Farin 2002].) Compared
with other freeform surfaces, such as B-spline or Bézier surfaces,
Coons patches are seldom used in contemporary freeform model-
ing applications. Nevertheless, there are many useful properties
of Coons patches that we employ in this work for the acceleration
of geometric algorithms for freeform shapes. The most important
property, for our purpose, is that Coons patches are uniquely deter-
mined by their boundary curves. As a direct consequence, Coons
patches can be subdivided very efficiently by evaluating points only
on their boundary curves.

The hierarchy of recursive Coons approximations generates a BVH,
where the leaf nodes contain the Coons patches approximating the
original freeform surface to within a given error bound. The in-
terior nodes of the BVH correspond to freeform surface patches
that are recursively subdivided. While it may seem there is noth-
ing dramatically different from conventional BVH approaches, the
significant difference is in the size of the surface patches that are
stored in the leaf nodes, and hence the size of the entire BVH. Be-
cause the Coons patches approximate the freeform surfaces very

http://doi.acm.org/10.1145/2024156.2024203
http://portal.acm.org/ft_gateway.cfm?id=2024203&type=pdf

tightly, the recursive subdivision process terminates early and the
Coons patches are in general much larger than typical triangles in
the polygonal mesh approximation for similar tolerances.

Switching from the freeform surface to the Coons patch at the leaf
level, we can proceed to the deeper levels of the hierarchy more
efficiently than the upper levels. From a geometric processing point
of view, Coons patches are fully prescribed by their boundary space
curves. The special structure of the Coons patch essentially reduces
the BVH construction to those for the boundary curves.

The BVH for a pair of opposite boundary curves is represented very
compactly by storing only the maximum error ε of the two polylines
that approximate the opposite curves simultaneously at each level of
the curve subdivision hierarchy. Thus we keep only a short list (con-
taining curve approximation errors) of length proportional to logn,
where n is the total number of curve segments at the final level of
subdivision. Using the four boundary curves thus approximated, a
Coons patch subdivided into mn subpatches can be approximated
by mn bilinear surfaces within a maximum error εu + εv , the sum-
mation of the respective curve approximation errors along the u and
v-directions. (See Appendix A for the proof.)

The main contribution of this work can be summarized as follows:

• We propose a compact BVH representation scheme for
freeform NURBS surfaces, which requires considerably (of-
ten more than 1000 times) less memory space than conven-
tional BVHs.

• We demonstrate the effectiveness of the proposed BVH
scheme by developing real-time algorithms for collision-
detection and minimum distance computation, for freeform
geometric models of non-trivial complexity.

2 Related Work

Many efficient geometric algorithms for polygonal meshes are
based on a hierarchy of bounding volumes constructed in a pre-
processing step [Akenine-Möller et al. 2008]. The specific type of
bounding volume(s) in use has a direct consequence on the perfor-
mance of algorithms; thus, this need has promoted the development
of many different types of bounding volumes. The most representa-
tive ones include spheres, axis-aligned bounding boxes (AABBs),
oriented bounding boxes (OBBs), and discrete oriented polytopes.

For the distance computation among freeform geometric models,
[Johnson and Cohen 1998] generated the BVH of freeform surfaces
on the fly by recursively subdividing the B-spline or Bézier surfaces
and bounding each surface patch using the convex hull of its control
points. The bivariate surface subdivision is time-consuming, which
has been the main bottleneck against the realization of real-time
algorithms for freeform models. In this paper, we show that the
special structure of the Coons patch provides an excellent solution
for the resolution of this problem.

[Krishnan et al. 1998a] made an early attempt to employ a pre-built
BVH for freeform geometric models using spherical shells. There
is, however, no clear termination condition for the BVH construc-
tion since the leaf nodes still contain freeform surfaces indefinitely.
At the leaf level one has to switch to the recursive subdivision of
freeform surfaces as in [Johnson and Cohen 1998]. A tightly fitting
bounding volume may alleviate this problem by providing a good
initial solution to the subsequent numerical procedures. Neverthe-
less, there is a fundamental limitation of the conventional BVHs in
this respect, due to the slow convergence rate in the approximation
of arbitrary freeform surfaces using regular shapes (such as spheres,
boxes, rectangles, etc.)

When dealing with freeform models, the “tightness” of fitting
should be measured very carefully, i.e., in terms of the Hausdorff
distance. The Coons BVH exhibits an important geometric fea-
ture that each point of the bounding volume has at least one point
from the original surface in a small neighborhood. In this paper,
we demonstrate how this property greatly simplifies the design of
geometric algorithms and the associated data structures.

For distance-related applications, the offset volumes such as line
swept sphere (LSS) and rectangle swept sphere (RSS) have many
useful properties [Larsen et al. 1999]. The LSS/RSS volumes
are only slightly looser than OBB in bounding objects of arbitrary
shape. On the other hand, distance computation with LSS/RSS be-
comes considerably easier as it is reduced to a simpler problem for
lines/rectangles. In this paper, we employ the offset of a tetrahe-
dron as the bounding volume and reduce the distance computation
to that of tetrahedra. Employing an efficient and robust implemen-
tation [van den Bergen 1999] of the GJK-algorithm [Gilbert et al.
1988], the distance between two tetrahedra can be computed in a
speed comparable to that of two rectangles.

Collision detection algorithms and systems have a long history of
development [Lin and Gottschalk 1998; Lin and Manocha 2004;
Teschner et al. 2005], which has culminated at the first real-time
implementation for highly complex polygonal scenes built in the
OBB tree [Gottschalk et al. 1996]. Recent work on collision detec-
tion deals with more complicated cases such as deformable mod-
els [James and Pai 2004; Teschner et al. 2005; Zhang and Kim
2007], continuous collision detection (CCD) [Redon et al. 2007;
Tang et al. 2008], and GPU-based algorithms including those ex-
ecuted on multiple CPU/GPUs [Govindaraju et al. 2003; Kim et
al. 2009]. A full coverage of these topics is beyond the scope of
this paper which is focused on a specific BVH data structure for
freeform NURBS surfaces. Nevertheless, the freeform geometric
models enhanced with our BVH structure have many useful prop-
erties that can better deal with these general topics.

3 Coons BVH

Given a freeform surface S(u, v), 0 ≤ u, v ≤ 1, a bilinearly
blended Coons patchX(u, v) interpolates the four boundary curves
of S(u, v):

X(u, v)

= (1− u)S(0, v) + uS(1, v) + (1− v)S(u, 0) + vS(u, 1)

−[(1− u)(1− v)S(0, 0) + (1− u)vS(0, 1)

+u(1− v)S(1, 0) + uvS(1, 1)].

Note that the Coons patch X(u, v) is generated by adding to-
gether two ruled surfaces (each interpolating two opposite boundary
curves) only to subtract a bilinear surface that interpolates the four
corners. Standard textbooks on CAGD [Cohen et al. 2001; Farin
2002] discuss more details of the Coons patch construction.

BVH for Freeform Surfaces: Given a freeform surface S(u, v),
we recursively subdivide the surface until the maximum error:
max(u,v) ‖S(u, v) − X(u, v)‖ becomes less than a given error
bound. The maximum error can be bounded using

‖S(u, v)−X(u, v)‖

=

∥∥∥∑∑
(sab − xab)Ba(u)Bb(v)

∥∥∥
≤

∑∑
‖sab − xab‖Ba(u)Bb(v)

≤ max ‖sab − xab‖,

(a) (b)

(c) (d)

Figure 2: Approximation of the Utah teapot using Coons patches:
(a) 44 Coons patches within an error bound 10−2, (b) 150 patches
for 10−3, (c) 492 patches for 10−4, and (d) 1688 patches for 10−5,
where the unit length is taken as the largest side length of the mini-
mum bounding box of the teapot.

where sab and xab are the control points for S(u, v) and X(u, v),
and Ba(u) and Bb(v) are the basis functions. (We can improve
the upper bound estimation by further subdividing the difference
surface at the parametric node corresponding to the control point of
max ‖sab − xab‖.)

The hierarchy of recursive subdivisions is recorded as a dual BVH,
where each node contains the radius of a bounding sphere of the
corresponding surface patch Sij(u, v), for ui ≤ u ≤ ui+1 and
vj ≤ v ≤ vj+1, and the maximum deviation of Sij(u, v) from the
tetrahedron determined by the four corners. Thus each node con-
tains only two scalar values which are computed in a preprocessing
step.

The sphere center is taken as the surface mid-point,
S(

ui+ui+1

2
,
vj+vj+1

2
). (The surface mid-points are also use-

ful for the different applications to be discussed in the coming
sections.) The surface center and corner points can be evaluated on
the fly. For the sake of compactness, we store none of these points
in the BVH representation. The leaf node of the BVH corresponds
to a Coons patch that interpolates the surface S(u, v) along the
corresponding four boundary iso-curve segments. The points on
the four iso-curves are also generated on the fly.

Figures 2(a)–(d) show the result of approximating the Utah teapot
using Coons patches within an error bound 10−2, 10−3, 10−4, and
10−5, respectively. For the cases of low precision approximations
such as those shown in Figures 2(a)-(b), the number of Coons ap-
proximation patches is even smaller than the number of Bézier sur-
faces that comprise the Utah teapot. In each example, we start
with 8 NURBS surfaces, where each periodic surface in the origi-
nal model is subdivided into two NURBS surfaces. These NURBS
surfaces are then approximated with 44, 150, 492, and 1688 Coons
patches, respectively, in the four examples of Figures 2(a)–(d).

Error Bound for Coons Patches: Assume that the opposite
boundary curves S(u, 0) and S(u, 1) are approximated within
an error bound εu by polylines sampled simultaneously at ui,
i = 0, · · · ,m. Similarly, the curves S(0, v) and S(1, v) are ap-
proximated within an error bound εv by polylines sampled at vj ,
j = 0, · · · , n. We can show that each iso-curve in X(u, v̂), for a
fixed v̂, can be approximated within the error bound εu by a poly-

(a) (b)

Figure 3: Coons patch and pairs of opposite boundary curves.

line determined by (m+ 1) points X(ui, v̂). Moreover, the Coons
patch X(u, v) can be approximated within an error bound εu + εv
bymn bilinear surfaces Lij(u, v), each determined by four corners
X(ui, vj), X(ui+1, vj), X(ui, vj+1), and X(ui+1, vj+1). (See
Figure 3.) This claim is a direct consequence of Theorem 14.6 (The
Remainder Theorem) of [Cohen et al. 2001]. The proof is based on
the concept of linear operator. (See also Appendix A.)

BVH for Coons Patches: The BVH for a Coons patchX(u, v) can
be generated using a hierarchy of offset volumes:

Oεu+εv (Vij) = {p | d(p, Vij) ≤ εu + εv},

which contains all points within a distance εu + εv from the tetra-
hedron Vij determined by the four corners of the Coons subpatch
Xij(u, v) (defined on a parameter domain [ui, ui+1] × [vj , vj+1])
that corresponds to each node of the BVH. This offset volume can
be generated by sweeping a ball of radius εu + εv over the tetra-
hedron Vij . (The bilinear surface Lij(u, v) with its four corners
is contained in Vij , and thus the offset volume Oεu+εv (Vij) com-
pletely bounds the Coons subpatchXij(u, v) that is within distance
εu + εv from the bilinear surface Lij(u, v).) Nevertheless, an ex-
plicit representation of the BVH would require a storage size pro-
portional to mn. Based on the special structure of the Coons patch,
we can design a considerably more compact BVH representation
scheme that is proportional to logm+ logn.

When we apply a uniform binary recursive subdivision to the
boundary curve S(u, 0), for 0 ≤ u ≤ 1, we will end up with a total
of n = 2h subsegments, where h is the maximal level of recursion.
At each level of the recursive subdivision, we take the maximum
error ε of the iso-curve S(u, 0) from the polyline sampled at uni-
form parameters ui = i/n, for 0 ≤ i ≤ n. Though this global
maximum error slightly over-estimates the local error for each sub-
segment, this gives a reasonably good error bound. Moreover, to
reduce the storage size by half, we store the maximum error for
both opposite boundary curves S(u, 0) and S(u, 1). We store these
error values, ε, in a list of length logn for each pair of opposite
boundary curves of the Coons patch. The ε-list for the v-direction
can be generated in a similar way. Therefore, the BVH structure for
a Coons patch can be represented by storing a total of logm+logn
values of the curve approximation error ε.

Figure 4(a) shows the Utah teapot precisely subdivided into 160
Bézier surfaces and each Bézier surface subdivided into smaller
Bézier patches until each of which is within distance 1.2 ∗ 10−3

from the bilinear surface interpolating the four corners. Figure 4(b)
shows the result of subdividing the Coons patches of Figure 2(b)
into smaller patches until each of which is within distance 2 ∗ 10−4

from the bilinear surface interpolating the four corners. For the
Coons patches, the maximum error from the bilinear surface is mea-
sured by adding εu + εv as explained above.

The number of bilinear surfaces for Figure 4(a) is 5074, whereas the
number for Figure 4(b) is 12864. Though the same error bound is
used for both examples, the error estimation for the Coons patches

(a) (b)

Figure 4: Approximation of Bézier surfaces and Coons patches
using bilinear surfaces: (a) 160 Bézier surfaces (precisely on the
Utah teapot) approximated with 5074 bilinear surfaces within an
error bound 1.2 ∗ 10−3 and (b) 150 Coons patches (within a dis-
tance 10−3 from the Utah teapot) approximated with 12864 bilin-
ear surfaces within an error bound 2 ∗ 10−4.

(a) (b) (c)

(d) (e) (e)

Figure 5: Bounding Coons patch with offset volumes.

in Figure 4(b) is looser than the case for the Bézier surfaces in Fig-
ure 4(a). Nevertheless, the generation of surface points is more effi-
cient for the Coons patches. Each point of Figure 4(a) is generated
by evaluating the bivariate Bézier surfaces. On the other hand, the
points of Figure 4(b) are generated as the result of combining linear
interpolations of univariate boundary curve points, which is consid-
erably more efficient to compute than the evaluation of points on a
bivariate surface.

Example: Figure 5(a) shows a Coons patch on the body of the
Utah teapot. The bounding volume of the Coons patch is shown
in Figure 5(b) as an offset volume of the tetrahedron determined
by the four corners. The result of recursive subdivisions along the
u and v-directions at the mid-parameter values is shown in Fig-
ures 5(c)-(f). The maximum errors in approximating the boundary
curves S(u, 0) and S(u, 1) by their respective polylines along the
u-direction are 0.0562, 0.0142, 0.0037, 0.0009, and 0.0002. More-
over, the maximum errors along the v-direction are 0.0314, 0.0145,
0.0044, 0.0011, and 0.0003. Consequently, the maximum errors
of the Coons patch from the bilinear surfaces in the five different
levels of approximation are 0.0876, 0.0287, 0.0081, 0.0020, and
0.0005. Depending on specific applications, we may not subdivide
the Coons patch in an alternating order of the u and v-directions.
Moreover, the maximum level of subdivision may be different in
each direction. Thus, we keep the two lists of curve approxima-
tion errors separately. For this example, we store two lists, each
containing five error values, in the BVH of the Coons patch. The
error values are relatively small compared with the coordinate val-
ues of other data points. Thus we store only quantized error in-
dices. In our implementation, we have quantized the approxima-
tion error in 256 different levels and the storage of each error in-
dex takes only 1 byte. (A simple method may employ ε0 = 1,
ε1 = r, . . . , ε255 = r255 = 10−7, where 0 < r = 10(−7

255
) < 1.)

4 Collision Detection

For collision detection, we now employ the sphere tree represen-
tation of the BVH for freeform surfaces, where each node corre-
sponds to a subdivided surface subpatch. The collision detection
algorithm for this high-level BVH proceeds in the same way as in
conventional algorithms. The only difference is that we need to
evaluate the sphere center as the surface mid-point.

When we reach the leaf level, we switch to the BVH for a Coons
patch, where the bounding volumes are the offsets of the tetrahe-
dra, Oεu+εv (V). For collision detection, we test the overlap be-
tween Oε1(V1) and Oε2(V2), for each pair of Coons patches un-
der comparison. For an overlap test, we first compute the distance
d(V1, V2) between two tetrahedra using the efficient and robust im-
plementation [van den Bergen 1999] of the GJK-algorithm[Gilbert
et al. 1988]. The two bounding volumes Oε1(V1) and Oε2(V2)
overlap if d(V1, V2) ≤ ε1 + ε2. Otherwise, they are separated.

When the bounding volumes overlap and their sizes are relatively
small, i.e., ε1 + ε2 < 10−3, we check if the conservative distance
d(V1, V2)+ ε1 + ε2 is also less than 10−3, the tolerance we take for
the case of Coons approximation with an error bound 10−5. If it is,
we report a collision event. (The Hausdorff distance between Vi and
the corresponding surface is less than εi; thus there are some points
pi from each surface with ‖p1−p2‖ = ‖p1−v1‖+‖v1−v2‖+
‖v2−p2‖ ≤ d(V1, V2)+ε1+ε2, for some vi ∈ Vi.) Otherwise, we
subdivide the Coons patches and continue the recursive procedure.
We also report a collision event when we reach the leaf levels of
the Coons BVHs under comparison. Nevertheless, we have never
experienced this case in all our experiments since the resolution
of our Coons BVH approximation is considerably higher than the
distance 10−3.

5 Minimum Distance Computation

Given two objects, A and B, their minimum distance d(A,B) sat-
isfies the following relation:

d(Ā, B̄) ≤ d(A,B) = min
p∈A

min
q∈B
‖p− q‖ ≤ ‖pA − qB‖,

for any pA ∈ A ⊂ Ā and qB ∈ B ⊂ B̄. We take the supersets
Ā and B̄ as the unions of bounding volumes, and sample the points
pA and qB on the freeform surfaces. Our algorithm recursively
refines the bounding volumes so that the lower bound d(Ā, B̄) in-
creases and the algorithm also updates the point locations pA and
qB so that the upper bound ‖pA−qB‖ decreases. When the differ-
ence between the two bounds drops below a certain tolerance, we
report their average as the minimum distance d(A,B).

For the distance computation, we employ the bounding offset vol-
umes OεA(VA) and OεB (VB) for computing and updating the
lower bound. The lower bound d is initially set to the distance
between OεA(VA) and OεB (VB), which can be derived from the
distance d(VA, VB) between their tetrahedra. The GJK-algorithm
for computing d(VA, VB) also returns the minimum distance points
vA ∈ VA and vB ∈ VB and their barycentric coordinates in some
triangles of the tetrahedra. Using these coordinates, we can sam-
ple the corresponding surface points pA and qB on the original
freeform surfaces (see Remark below). The upper bound d̄ is then
set to ‖pA − qB‖.

We then refine one bounding volume to two smaller onesOεi
A

(V iA),

for i = 1, 2, and compute the distance between Oεi
A

(V iA) and

OεB (VB)). If the distance is larger than the upper bound d̄, we can
eliminate the corresponding pair from further consideration. Oth-
erwise, we can compute the surface points piA and qiB and update

the upper bound d̄ as needed. Finally, we update the lower bound d
to mini=1,2 d(Oεi

A
(V iA), OεB (VB)) if it is larger than the current

lower bound d.

Remark: Given a bilinear surface L(u, v) = (1−u)(1− v)p00 +
(1 − u)vp01 + u(1 − v)p10 + uvp11, and a boundary triangle
T (u, v) = (1− u− v)p00 + up10 + vp01 of the tetrahedron V ,

L(u, v)− T (u, v) = uv(p00 + p11 − p01 − p10).

The distance between T (u, v) and the corresponding surface point
S(u, v) is thus bounded by 1.2∗10−k+uv‖p00+p11−p01−p10‖,
where a Coons patch X(u, v) approximates S(u, v) within 10−k

and L(u, v) approximates X(u, v) within 0.2 ∗ 10−k, for some k.
In a triangular domain 0 ≤ u, v, 1−u−v ≤ 1, we have 0 ≤ uv ≤
1/4, and uv = 1/4 only when u = v = 1/2. This means that the
Hausdorff distance between the bilinear surface L and its bounding
tetrahedron V is exactly ‖p00 + p11 − p01 − p10‖/4.

6 Experimental Results

We have implemented the proposed BVH construction algorithm
in C++ on an Intel Core i7-2600 3.4GHz CPU with a 16GB main
memory and an NVIDIA Geforce GTX570. To demonstrate the
effectiveness of the proposed BVH structure, we have also imple-
mented real-time algorithms for collision detection and minimum
distance computation for several different freeform geometric mod-
els of non-trivial complexity.

Coons BVH Construction: Table 1 reports the performance of sur-
face approximation using the Coons patches for different levels of
approximation error 10−k, for k = 2, 3, 4, 5. Also shown are the
results of approximating the boundary curves of the Coons patches
using polylines within an error bound 0.1 ∗ 10−k. This guaran-
tees that the Coons patches are approximated by bilinear surfaces
within twice the curve approximation error, and consequently the
bilinear surfaces approximate the original freeform surfaces within
a maximum error bound 1.2 ∗ 10−k.

Table 1(a) shows the BVH construction result for the Utah teapot
which is composed of four periodic NURBS surfaces. Each peri-
odic surface is subdivided into two and the total number of NURBS
surfaces is shown as eight in the first row. Each NURBS surface
may contain a different number of piecewise polynomial/rational
surfaces. Thus also shown in the first row is the total number of
Bézier surfaces in the freeform model. Nevertheless, the Coons
patch approximation is directly applied to the eight NURBS sur-
faces instead of the Bézier surfaces, which explains why the number
of Coons patches can be smaller than the number of Béizer surfaces
in the two low precision cases. The second row shows the size of
the freeform model and the four different levels of error bound we
employ for the Coons approximation. The model size is measured
as the memory space for storing the NURBS control points and the
knot sequences. The largest side length of the minimum bounding
box for the freeform model is taken as the unit length. The items
below each error bound report the total number of Coons patches
at the leaf level of the surface BVH, the total number of bilinear
surfaces approximating the Coons patches, and the total size of the
BVH structure including the surface BVH (containing the Coons
patches in the leaf nodes) as well as the Coons BVH (containing
the lists of curve approximation errors). The last row shows the
total BVH construction time (in seconds). Though the preprocess-
ing algorithm is not a highly optimized one, the performance is
reasonably acceptable since the BVHs can be constructed in a few
seconds/minutes for all the freeform surface models we have tested
in this paper.

Teapot #NURBS(8) #Bézier(160)
(4KB) 10−2 10−3 10−4 10−5

#Coons 44 150 492 1,688
#Bilinear 7.8K 51.8K 636K 5.6M
Coons BVH 0.73KB 2.7KB 9.7KB 55KB
Time (sec) 0.14 0.42 1.65 8.24

(a)

B58 #NURBS(240) #Bézier(266)
(12KB) 10−2 10−3 10−4 10−5

#Coons 210 276 530 1,552
#Bilinear 23.9K 75.4K 726K 10.1M
Coons BVH 2.3KB 4.1KB 9.6KB 31.9KB
Time (sec) 0.09 0.30 1.14 5.90

(b)

Eagle #NURBS(273) #Bézier(9786)
(102KB) 10−2 10−3 10−4 10−5

#Coons 348 1,313 6,314 24,594
#Bilinear 463K 3.4M 39.7M 235M
Coons BVH 5.8KB 23.8KB 118KB 482KB
Time (sec) 18.2 34.1 70.9 184.7

(c)

Playground #NURBS(984) #Bézier(2264)
(120KB) 10−2 10−3 10−4 10−5

#Coons 1,243 1,723 4,476 12,526
#Bilinear 284K 2.5M 10.5M 98.4M
Coons BVH 13.8KB 26.6KB 82.5KB 258KB
Time (sec) 1.5 3.8 14.1 60.0

(d)

Table 1: Results of Coons approximation and BVH construction.

Teapot 10−2 10−3 10−4 10−5

#Triangles 1.2K 11K 99K 938K
BVH (RSS) 320KB 2.7MB 25MB 240MB
Time (sec) 0.009 0.094 0.95 9.7

(a)

B58 10−2 10−3 10−4 10−5

#Triangles 1K 5K 45K 424K
BVH (RSS) 250KB 1.3MB 11MB 109MB
Time (sec) 0.006 0.047 0.41 4.2

(b)

Eagle 10−2 10−3 10−4 10−5

#Triangles 2K 26K 199K 1.6M
BVH (RSS) 550KB 6.5MB 51MB 421MB
Time (sec) 0.016 0.24 2 18

(c)

Playground 10−2 10−3 10−4 10−5

#Triangles 14K 112K 1.0M 9.3M
BVH (RSS) 3.6MB 29MB 259MB 2.4GB
Time (sec) 0.12 1.1 11 108

(d)

Table 2: Comparison with conventional BVH construction.

(a) (b)

Figure 6: B58 and eagle models approximated with 1.6K and 25K
Coons patches, respectively, within an error bound 10−5.

Table 1(b) reports the result for the B58 model shown in Figure 6(a).
This model has many sharp edges as the NURBS representation has
multiple knots. The initial NURBS surfaces are subdivided along
these sharp edges and the periodic NURBS surfaces are also sub-
divided in the middle. The total number of NURBS surfaces after
the subdivision is shown in the first row of Table 1(b), together with
the total number of Bézier surfaces. Table 1(c) is the result for the
eagle model shown in Figure 6(b). This model contains a total of
9786 bicubic Bézier surfaces. The large number is mainly due to
the irregular shape of the eagle model, whose NURBS representa-
tion requires relatively long knot sequences.

Figure 7 contains several different freeform models for the struc-
tures commonly found in the playground for kids. The slide is
shown twice, once with the sand model. There are also two in-
stances of the t-swing. Each model is taken separately in the BVH
construction. We take the unit length of each model as the largest
side length of the individual minimum bounding box. Table 1(d)
shows the result of the BVH construction for all the NURBS sur-
faces included in the freeform models of the playground, where the
slide and the t-swing are counted twice as they appear twice.

Efficient geometric computations: Figure 1(a) shows a snapshot
from animation clips we have generated to demonstrate the per-
formance of our collision detection algorithm. Employing Open
Dynamics Engine (ODE), an open source library for simulating
rigid body dynamics (http://www.ode.org), we have conducted a
dynamic simulation for 10000 chess pieces falling to a pile. The
penetration depth was computed using the technique of [Guendel-
man et al. 2003], which is based on a precomputed distance field in
the interior of each model. In this simulation, each frame was gen-
erated in 30 seconds on average. In addition to the computing time
for collision detection, this includes the dynamic simulation time
by the ODE system as well as the graphics rendering time. Fig-
ure 1(b) shows the B58 model flying in a complex dynamic scene
that contains many Utah teapots falling to the playground. The min-
imum distance was computed between the flying B58 model and the
freeform models in the dynamic scene. In this example, we have
observed the performance of generating each frame in less than 30
milliseconds. In all the tests reported in this paper, we have used
the Coons patch approximations of the freeform models with the
error bound 10−5.

Performance comparison with PQP: There is a fundamental lim-
itation of conventional bounding volumes in representing the BVH
of freeform geometric models. Since there is no clear termination
condition for the leaf level, one has to deal with freeform surfaces
at the end of the BVH traversal. Because of the exponential growth
of the conventional BVH size, the maximum BVH level is also
severely limited. (On the other hand, the Coons BVH exhibits only
a linear growth of its size.) Our trial to approximate the Utah teapot
using an RSS tree has not been successful when we bounded, as the
termination condition, the Hausdorff distance between an RSS and
the surface patch within a given tolerance.

As a reasonable alternative for performance comparison with the
conventional BVH schemes, we have thus employed polygonal ap-
proximations to the freeform geometric models. Using the IRIT li-
brary function CagdSrfAdap2Polygons [IRIT 10.0], we have
generated triangular meshes approximating the test freeform sur-
faces within given tolerances in terms of the Hausdorff distance
measure. The BVH of each polygonal model is then constructed
using the PQP library (http://gamma.cs.unc.edu/SSV/) that is based
on [Larsen et al. 1999]. The BVH construction result is reported
in Table 2, where the BVH size includes only the BVH node data
but not the input triangles. We can notice that the Coons BVH is
considerably more compact than the RSS tree, which often shows
more than 1000 times size reduction for the high-precision case of
error bounds 10−k, for k = 4, 5.

To measure the relative performance of our algorithms (based on
the Coons BVH) against similar algorithms implemented in the
PQP library (using only the RSS tree of [Larsen et al. 1999], not
activating the dual OBB tree part of the PQP system), we have con-
ducted two comparison tests as shown in Figure 7: (a) collision
detection for a dynamic simulation of 1000 Utah teapots falling to
a pile, and (b) the minimum distance computation for a B58 model
flying over the playground. In these two tests, we have chosen
the triangular meshes with approximation error 10−3, whose BVHs
require relatively small memory space compared with other high-
precision cases. On the other hand, we employ the Coons BVHs
with approximation error 1.2 ∗ 10−5 and set the tolerance of col-
lision detection to 2 ∗ 10−3. Note that the PQP collision detection
also guarantees the same tolerance for the minimum distance be-
tween two original surface models.

The two charts of Figure 8 report the comparison results for the rel-
ative performance of the two tests. The graphs in blue correspond to
the performance of the PQP library in computing time. The graphs
in green are for the algorithms based on the Coons BVH. The result
in green reports the computing time, including the dynamic gen-
eration of Coons BVH nodes as well as other geometric computa-
tions. The nodes dynamically generated are immediately discarded
to save the runtime memory space for the Coons BVH. Neverthe-
less, we keep the basis function values Ba(u) and Bb(v) evaluated
at different parameters u and v, which are quite expensive to re-
compute but can be saved only in a small space. By traversing the
Coons BVH in a preprocessing step, we can precompute and store
the function values Ba(u) and Bb(v) up to a certain level. This
technique greatly accelerates the runtime performance of our algo-
rithm. Figure 9 shows the growth of the memory space for the three
models in the two tests of Figure 7. Note that the initial memory
size is bigger than the BVH size for each model, since this includes
the NURBS control points and knot sequences and we also do some
precomputing for the basis function values and other auxiliary data
structures for the BVH. Nevertheless, these precomputations usu-
ally take less time than loading the mesh models.

7 Conclusions

We have presented a compact BVH representation scheme for
freeform surfaces. The BVH size is often more than 1000 times
smaller than those for polygonal meshes of similar complexity.
Thus the proposed BVH representation has a great potential in mo-
bile applications where compact representations are important not
only for the object modeling itself but also for the associated data
structures. Even though we have demonstrated the efficiency of
our algorithms for freeform models, there is a large room for fur-
ther improvement as our approach employs a large number of point
evaluations on freeform curves and surfaces. In future work, we
plan to improve the performance of our algorithms by developing
new acceleration techniques, including GPU accleration.

(a) (b)

Figure 7: Performance comparison tests against the PQP library: (a) collision detection in a dynamic simulation for 1000 Utah teapots
falling to a pile, and (b) the minimum distance computation between a flying B58 model and the playground.

0

500

1000

1500

2000

0 20 40 60 80 100 120 140 160 180 200

Collision Detection

Ti
m

e
(m

s)

 (a) Frame

Coons
PQP

0

0.50

1.00

1.50

2.00

2.50

0 20 40 60 80 100 120 140 160 180 200

Minimum Distance

Ti
m

e
(m

s)

 (b) Frame

Coons
PQP

Figure 8: Performance comparison results for the two tests: (a) collision detection and (b) minimum distance computation.

Acknowledgments: The authors would like to thank the anony-
mous reviewers for their invaluable comments. This research was
supported in part by the Israeli Ministry of Science Grant No. 3-
8273, and in part by NRF Research Grants (Nos 2010-00787, 2011-
0003474, and 2011-0018017).

References

Akenine-Möller, T., Hains, E., Hoffman, N.: Real-Time Rendering,
A.K. Peters, Natick, MA, 3rd Ed., 2008.

Cohen, E., Riesenfeld, R., and Elber, G.: Geometric Modeling with
Splines: An Introduction, A.K. Peters, Natick, MA, 2001.

Coons, S.: Surfaces for Computer-Aided Design, Technical report,
MIT, 1964. Available as AD 663 504 from the National Techni-
cal Information Service, Springfield, VA, 22161.

Farin, G.: Curves and Surfaces for CAGD, 5th Ed., MorganKauf-
mann, San Francisco, CA, 2002.

Gilbert, E., Johnson, D., Keerthi, S.: A fast procedure for comput-
ing the distance between complex objects in three-dimensional
space. IEEE Trans. Robot. Automat. 4, 2, 193–203, 1988.

Gottschalk, S., Lin, M., Manocha, D.: OBB-tree: a hierarchical

structure for rapid interference detection. Computer Graphics
(SIGGRAPH 1996), 171–180, 1996.

Govindaraju, N., Redon, S., Lin, M., Manocha, D.: Cul-
lide: interactive collision detection between complex models in
large environments using graphics hardware. Proc. Eurograph-
ics/SIGGRAPH Graphics HardwareWorkshop, pp. 25–32, 2003.

Guendelman, E., Bridson, R., Fedkiw, R.: Nonconvex Rigid Bod-
ies with Stacking. Proc. of SIGGRAPH 03, Computer Graphics
Annual Conference Series, 2003.

IRIT 10.0 User’s Manual, Technion. http://www.cs.technion. ac.il/
∼irit.

James, D., Pai, D.: Bd-tree: output-sensitive collision detection
for reduced deformable models. ACM Trans. on Graphics 23, 3,
393–398, 2004.

Johnson, D., Cohen, E.: A framework for efficient minimum dis-
tance computations. IEEE Int’l Conf. on Robotics and Automa-
tion, 3678-3684, 1998.

Kim, D., Heo, J.-P., Huh, J., Kim, J., Yoon, S.-E.: HPCCD: Hybrid
parallel continuous collision detection using CPUs and GPUs.
(Proc. of Pacific Graphics 2009), Computer Graphics Forum 28,
7, 1791–1800, 2009.

0

20

40

60

80

0 20 40 60 80 100 120 140 160 180 200

B58

M
em

or
y

Si
ze

 (K
B)

 Frame

Figure 9: Memory usage of three models in the two tests.

Krishnan, S., Gopi, M., Lin, M., Manocha, D., Pattekar, A.: Rapid
and accurate contact determination between spline models using
ShellTrees. Computer Graphics Forum 17, 3, 315–326, 1998.

Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast proximity
queries using swept sphere volumes. Technical Report TR99-
018, Dept. of Computer Science, UNC, 1999.

Lin, M.C., Gottschalk, S.: Collision detection between geometric
models: A survey. Proc. of IMA Conference on Mathematics of
Surfaces, pp. 37–56, 1998.

Lin, M.C., Manocha, D.: Collision and proximity queries.
Handbook of Discrete and Computational Geometry, 2nd Ed.,
J.E. Goodman and J. O’Rourke, Eds., Chapman & Hall/CRC,
pp. 787–807, 2004.

Redon, S., Kim, Y., Lin, M., Manocha, D.: Fast continuous colli-
sion detection for articulated models. Proc. ACM Symp. on Solid
Modeling and Applications, pp. 145–156, 2004.

Samet, H.: Foundations of Multidimensional and Metric Data
Structures, Morgan Kaufmann, San Francisco, CA, 2006.

Tang, M., Curtis, S., Yoon, S.-E., Manocha, D.: Interactive con-
tinuous collision detection between deformable models using
connectivity-based culling. SPM ’08: Proc. of ACM Symp. on
Solid and Physical Modeling, Stony Brook, New York, pp. 25–
36, 2008.

Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G.,
Raghupathi, L., Fuhrmann, A., Cani, M.-P., Faure, F., Magnenat-
Thalmann, N., Strasser, W., Volino, P.: Collision detection for
deformable objects. Computer Graphics Forum 24, 1, 61–81,
2005.

van den Bergen, G.: A fast and robust GJK implementation for
collision detection of convex objects. Journal of Graphics Tools
4, 2, 7–25, 1999.

Yoon, S.-E., Manocha, D.: Cache-efficient layouts of bounding
volume hierarchies. Computer Graphics Forum 25, 3, 507–516,
2006.

Zhang, X., Kim, Y.: Interactive collision detection for deformable
models using streaming AABBs. IEEE Trans. on Visualization
and Computer Graphics 13, 2, 318–329, 2007.

A Bounding the Error for Coons Patches

A Coons patch X(u, v) bilinearly interpolates its four boundary
curves. For a fixed v̂, the iso-curve X(u, v̂) is given as follows

X(u, v̂) = (1− u)X(0, v̂) + uX(1, v̂)

+(1− v̂)X(u, 0) + v̂X(u, 1)

−[(1− u)(1− v̂)X(0, 0) + (1− u)v̂X(0, 1)

+u(1− v̂)X(1, 0) + uv̂X(1, 1)].

Now we consider the difference between the iso-curveX(u, v̂) and
the line segment connecting the two end points:

X(u, v̂)− [(1− u)X(0, v̂) + uX(1, v̂)]

= (1− v̂)X(u, 0) + v̂X(u, 1)

−[(1− u)(1− v̂)X(0, 0) + (1− u)v̂X(0, 1)

+u(1− v̂)X(1, 0) + uv̂X(1, 1)]

= (1− v̂)[X(u, 0)− (1− u)X(0, 0)− uX(1, 0)]

+v̂[X(u, 1)− (1− u)X(0, 1)− uX(1, 1)].

Thus the maximum deviation of the iso-curve X(u, v̂) is a con-
vex combination of those for the two boundary curves X(u, 0) and
X(u, 1) from their respective line segments.

Now we can derive the maximum deviation of the Coons patch
X(u, v) from the bilinear surface L(u, v) interpolating the four
corners as follows:

X(u, v)− L(u, v)

= (1− u)X(0, v) + uX(1, v)− L(u, v)

+(1− v)X(u, 0) + vX(u, 1)− L(u, v)

= (1− u)[X(0, v)− (1− v)X(0, 0)− vX(0, 1)]

+u[X(1, v)− (1− v)X(1, 0)− vX(1, 1)]

+(1− v)[X(u, 0)− (1− u)X(0, 0)− uX(1, 0)]

+v[X(u, 1)− (1− u)X(0, 1)− uX(1, 1)].

The Coons subpatch X(u, v), for ui ≤ u ≤ ui+1 and vj ≤
v ≤ vj+1, is bounded by four iso-curves X(ui, v), X(ui+1, v),
X(u, vj), and X(u, vj+1). The maximum deviation of the Coons
subpatch from the bilinear surface Lij(u, v) with four corners:
X(ui, vj), X(ui, vj+1), X(ui+1, vj), and X(ui+1, vj+1), can be
bounded by a similar combination of the maximum deviations of
the iso-curve segments from the four edges of the bilinear sur-
face. This can be proven by repeatedly subdividing the Coons patch
along each of the four iso-curves and applying the two properties
shown above.

