
The Bisector Surface of Rational Space
Curves

GERSHON ELBER
Technion, Israel Institute of Technology
and
MYUNG-SOO KIM
POSTECH, South Korea

Given a point and a rational curve in the plane, their bisector curve is rational [Farouki and
Johnstone 1994a]. However, in general, the bisector of two rational curves in the plane is not
rational [Farouki and Johnstone 1994b]. Given a point and a rational space curve, this article
shows that the bisector surface is a rational ruled surface. Moreover, given two rational space
curves, we show that the bisector surface is rational (except for the degenerate case in which
the two curves are coplanar).
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1. INTRODUCTION

Given two objects in the plane or space, their bisector curve or surface is
defined as the set of points which are equidistant from the two objects. The
medial axis and medial surface are also closely related to the bisector curve
and surface; that is, given an object in the plane or space, the medial axis
or surface is defined as the set of interior points of the object which have
minimum distance from at least two different points on the boundary of the
object.
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Bisector surfaces and medial surfaces have many important applications
in engineering [Dutta and Hoffman 1993; Hoffman 1990; Hoffman and
Vermeer 1991; Sheehy et al. 1996; Sherbrooke et al. 1996] (see Sherbrooke
et al. [1996] for a detailed survey). However, their construction is nontrivial
except for some special cases. Dutta and Hoffmann [1993] considered the
bisectors for simple surfaces such as natural quadrics and toroidal sur-
faces. For these special types of surfaces, the bisector surfaces have simple
closed-form representations. For general algebraic surfaces, Hoffman
[1990] and Hoffmann and Vermeer [1991] formulated the bisector surface
(called the Voronoi surface) using a simultaneous system of nonlinear
polynomial equations. The solution scheme is based on the dimensionality
paradigm [Hoffman 1990], which requires a preprocessing step that deter-
mines the global topological structure of the solution space.

Sheehy et al. [1996] determine the topology of medial vertices, edges, and
faces of a solid by computing the domain Delaunay triangulation of a
relatively sparse distribution of object boundary points. Each cell of the
triangulation connects different parts of the object boundary. A cell with
four corners, each from a different boundary surface patch, is supposed to
contain a medial vertex. The cells for medial edges and faces can also be
classified in a similar way. More precise approximation for vertex, edge,
and face can be computed by using the dimensionality paradigm [Hoffman
1990].

Approximation of bisectors is computationally quite expensive. Therefore,
it is desirable to classify special cases in which the bisectors have exact
representations or simple approximations. Farouki and Johnstone [1994a;
1994b] investigated the bisector problem for planar rational curves. Given
a point and a rational curve in the plane, the bisector curve is rational
[Farouki and Johnstone 1994a]. However, in general, the bisector of two
polynomial or rational curves in the plane is algebraic, but not rational
[Farouki and Johnstone 1994b]. In practice, numerical tracing techniques
are required to approximate the bisector curve [Farouki and Ramamurthy
1997]. This article considers the bisector problem for space curves and
shows that the added extra dimension of the 3D space actually alleviates
the level of difficulty! That is, given a point and a rational space curve,
their bisector is a rational ruled surface. Moreover, given two rational
space curves, their bisector surface is rational (except for the two-dimen-
sional degenerate case in which the two curves are coplanar).

The basic idea of our approach is as follows. Given two C1-continuous
space curves, C1(s) and C2(t), we consider necessary conditions for two
points C1(s0) and C2(t0) to generate a bisector point P:

(1) Point P must be located in the normal plane L1(s0) of C1(s) at C1(s0).
(2) Similarly, point P must also be located in the normal plane L2(t0) of

C2(t) at C2(t0).
(3) Moreover, point P is located in the bisector plane L12(s0, t0) which is

the set of equidistant points from C1(s0) and C2(t0).
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When the three planes: L1(s0), L2(t0), and L12(s0, t0), are in general
position (i.e., no two of them are parallel to each other), there exists a
unique intersection point P of the three planes.

When the curves C1(s) and C2(t) are rational space curves, the planes
L1(s), L2(t), and L12(s, t) can be represented as implicit equations (of x, y,
z) with rational coefficients in s and t:

L1~s!: a1~s! x 1 b1~s! y 1 c1~s! z 5 d1~s!

L2~t!: a2~t! x 1 b2~t! y 1 c2~t! z 5 d2~t!

L12~s, t!: a12~s, t! x 1 b12~s, t! y 1 c12~s, t! z 5 d12~s, t!,

where all the coefficients are rational functions of s and t. Based on
Cramer’s rule, it is quite straightforward to show that x, y, z are rational
functions of these coefficients; therefore, they are rational functions of s
and t. As a result, we can represent the bisector surface P(s, t) as a
rational surface of s and t.

When one of the two curves (say, C1(s)) degenerates to a single point Q,
the orthogonal plane L1(s) is not defined. Let L12(t) denote the bisector
plane between Q and C2(t), then we have the following plane equations of
L2(t) and L12(t):

L2~t!: a2~t! x 1 b2~t! y 1 c2~t! z 5 d2~t!

L12~t!: a12~t! x 1 b12~t! y 1 c12~t! z 5 d12~t!,

where all the coefficients are rational functions of t. The common solution
of the above two equations is the intersection line of two planes: L2(t) and
L12(t). That is, each parameter t contributes a line to the bisector surface;
thus the bisector surface becomes a ruled surface. The direction N(t) of
each ruling line is given by the cross product of the normals of L2(t) and
L12(t):

N~t! 5 ~a2~t!, b2~t!, c2~t!! 3 ~a12~t!, b12~t!, c12~t!!,

which is rational. To represent the ruled bisector surface as a rational
surface, we need to construct a rational directrix curve on the surface. Let
L1(t) be the plane which passes through the given point Q and is orthogo-
nal to the ruled direction N(t) at t:

L1~t!: a1~t! x 1 b1~t! y 1 c1~t! z 5 d1~t!,

where N(t) 5 (a1(t), b1(t), c1(t)) and d1(t) 5 ^N(t), Q&. All the
coefficients of L1(t), L2(t), and L12(t) are rational; therefore, their common
intersection point is also rational in t. The trace of these intersection points
generates a rational directrix curve on the ruled bisector surface. Since the
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ruling direction curve N(t) is also rational, the bisector surface is a rational
ruled surface.

Given two rational space curves, the existence of a rational bisector
surface has great potential in surface design as well as in conventional
engineering applications of medial surfaces. It is easy to control the
geometric shape of a (bisector) surface by changing the shape and orienta-
tion of the two base curves or a ruled (bisector) surface with the base curve
and base point. In a sense, the design of a bisector surface requires a
similar amount of work for the design of sweep surfaces such as surface of
revolution or surface of extrusion. Further research is required to investi-
gate the representational power of the bisector surface of two space curves.
All the figures in this article were created using tools implemented as part
of the IRIT [1996] solid modeling system, developed at the Technion, Israel.

This article is organized as follows. In Section 2, given two rational space
curves, we construct the bisector surface as a rational surface. In Section 3,
given a point and a rational space curve, we construct the bisector surface
as a rational ruled surface. Finally, in Section 4, we conclude the article.

2. BISECTOR SURFACE OF TWO SPACE CURVES

In this section, given two rational space curves, we construct their bisector
as a rational surface. Section 2.1 derives the rational representation of the
bisector surface. Section 2.2 provides some examples of rational bisector
surfaces of two space curves. In Section 2.3, we classify the degenerate
cases in which the bisector surface may not have rational representation.

2.1 Rational Representation of Bisector Surface

Let C1(s) 5 ( x1(s), y1(s), z1(s)) and C2(t) 5 ( x2(t), y2(t), z2(t)) be two
regular parametric C1-continuous space curves. The regularity and C1-
continuity conditions imply that the tangent vectors T1(s) 5 ( x91(s), y91(s),
z91(s)) and T2(t) 5 ( x92(t), y92(t), z92(t)) are non-zero continuous vector
fields. (Note that T1(s) and T2(t) are non-unit vectors, in general.) Let
L1(s0) denote the normal plane of C1(s) at C1(s0), which contains C1(s0)
and is orthogonal to T1(s0); the normal plane L2(t0) is defined in a similar
way. Then, due to the continuity of T1(s) and T2(t), the normal planes
L1(s) and L2(t) are well-defined and move continuously along the curves
C1(s) and C2(t), respectively.

When a point P is on the bisector of two curves, there exist (at least) two
points C1(s) and C2(t) such that point P is simultaneously contained in the
normal planes L1(s) and L2(t). As a result, the point P satisfies the
following two linear equations:

L1~s!: ^P 2 C1~s!, T1~s!& 5 0, (1)

L2~t!: ^P 2 C2~t!, T2~t!& 5 0. (2)
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Moreover, point P is also contained in the bisector plane L12(s, t) between
the two points C1(s) and C2(t). The plane L12(s, t) is orthogonal to the
vector C1(s) 2 C2(t) and passes through the mid point [C1(s) 1 C2(t)]/ 2
of C1(s) and C2(t). Therefore, the bisector plane L12(s, t) is defined by the
following linear equation:

L12~s, t!: KP 2
C1~s! 1 C2~t!

2
, C1~s! 2 C2~t!L 5 0. (3)

Any bisector point P must be a common intersection point of the three
planes of L1(s), L2(t), and L12(s, t), for some s and t. Therefore, the point
P can be computed by solving the following simultaneous linear equations
in P:

^P, T1~s!& 5 ^C1~s!, T1~s!&,

^P, T2~t!& 5 ^C2~t!, T2~t!&,

^P, C1~s! 2 C2~t!& 5
iC1~s!i2 2 iC2~t!i2

2
. (4)

Then, we have the following matrix equation,

3 x91~s! y91~s! z91~s!

x92~t! y92~t! z92~t!

x12~s, t! y12~s, t! z12~s, t!
4 3 px

py

pz
4 5 3 d1~s!

d2~t!

m~s, t!
4 , (5)

where

P 5 ~ px , py , pz!,

d1~s! 5 ^C1~s!, T1~s!&,

5 x1~s! x91~s! 1 y1~s! y91~s! 1 z1~s! z91~s!,

d2~t! 5 ^C2~t!, T2~t!&,

5 x2~t! x92~t! 1 y2~t! y92~t! 1 z2~t! z92~t!,

m~s, t! 5
iC1~s!i2 2 iC2~t!i2

2
,

~x12~s, t!, y12~s, t!, z12~s, t!! 5 ~x1~s! 2 x2~t!, y1~s! 2 y2~t!, z1~s! 2 z2~t!!.
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By Cramer’s rule, Eq. (5) can be solved as follows:

px 5

* d1~s! y91~s! z91~s!

d2~t! y92~t! z92~t!

m~s, t! y12~s, t! z12~s, t! *
* x91~s! y91~s! z91~s!

x92~t! y92~t! z92~t!

x12~s, t! y12~s, t! z12~s, t! *
,

py 5

* x91~s! d1~s! z91~s!

x92~t! d2~t! z92~t!

x12~s, t! m~s, t! z12~s, t! *
* x91~s! y91~s! z91~s!

x92~t! y92~t! z92~t!

x12~s, t! y12~s, t! z12~s, t! *
,

pz 5

* x91~s! y91~s! d1~s!

x92~t! y92~t! d2~t!

x12~s, t! y12~s, t! m~s, t! *
* x91~s! y91~s! z91~s!

x92~t! y92~t! z92~t!

x12~s, t! y12~s, t! z12~s, t! *
. (6)

The bisector surface P(s, t) 5 ( px(s, t), py(s, t), pz(s, t)) has a simple
rational representation as long as the common denominator of px, py, and
pz in Eq. (6) does not vanish. That is, the tangent vectors T1(s), T2(t), and
the difference vector C1(s) 2 C2(t) must be linearly independent so that
the coordinate functions px(s, t), py(s, t), and pz(s, t) are well-defined and
rational. In Section 2.3, we show that the degenerate cases essentially
reduce to the special case in which the two curves C1(s) and C2(t) are
coplanar.

2.2 Examples of Rational Bisector Surfaces

Figure 1 shows an example of the bisector surface of two non-intersecting
orthogonal straight lines in the 3D space. In this example, the two base
curves C1(s) and C2(t) have simple curve representations:

C1~s! 5 ~1, s, 0! and C2~t! 5 ~0, 0, t!. (7)
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Therefore, we have

d1~s! 5 s,

d2~t! 5 t,

m~s, t! 5
1 1 s2 2 t2

2
,

~ x12~s, t!, y12~s, t!, z12~s, t!! 5 ~1, s, 2t!.

Consequently, the bisector surface P(s, t) has the following simple rational
(in fact, polynomial) representation:

P~s, t! 5 S1 2 s2 1 t2

2
, s, tD .

In general, the bisector surface of any two non-intersecting skew lines in
the 3D space is a hyperbolic paraboloid [Dutta and Hoffman 1993]. Using
the bisector surface of two lines, we can also compute the bisector surface of
two cylinders of the same radius.

In Figure 2, two quadratic Bézier curves are given in the 3D space. Each
curve is a planar curve (since every quadratic curve must be planar).
However, they are not coplanar. The resulting bisector is a rational surface
of degree (6,6).

Figure 3(a) shows the bisector surface of the unit circle C1(s) in the
xy-plane and the line C2(t) on the z-axis:

C1~s! 5 S1 2 s2

1 1 s2
,

2s

1 1 s2
, 0D , (8)

C2~t! 5 ~0, 0, t!. (9)

Fig. 1. The bisector surface of two orthogonal lines in the 3D space.
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In this example, we have

d1~s! 5 0,

d2~t! 5 t,

m~s, t! 5
1 2 t2

2
,

~ x12~s, t!, y12~s, t!, z12~s, t!! 5 S1 2 s2

1 1 s2
,

2s

1 1 s2
, 2tD .

Fig. 2. A bisector surface of two quadratic Bézier curves in the 3D space.

Fig. 3. Three examples of the bisector surface of a line and a circle.
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Consequently, the bisector surface P(s, t) has the following rational
representation:

P~s, t! 5 S ~1 2 s2!~1 1 t2!

2~1 1 s2!
,

s~1 1 t2!

~1 1 s2!
, tD .

Figures 3(b) and 3(c) also generate similar rational surfaces of degree
(3,9). Using the bisector surface of a line and a circle, we can compute the
bisector surface of a cylinder and a torus with the same minor radius. In
general, the bisector surface of two space curves can be used to compute the
bisector surface of two canal surfaces which are generated by sweeping two
spheres of the same fixed radii along the two space curves. The bisector
surface in Figure 3(c) has poles. In other words, the denominator of the
rational bisector surface vanishes to zero for some values of s and t,
creating multiple sheets that meet at infinity. The bisector surface pre-
sented in Figure 3(c) is hence only a finite subset of the real infinite
bisector.

Figure 4 shows two more examples of the bisector surface of two non-
planar curves. Figure 5 shows another set of two examples of bisector
surfaces, this time rendered as (transparent) shaded surfaces.

2.3 Degenerate Cases

When the two curves C1(s) and C2(t) are in the same plane, the three
vectors T1(s), T2(t), and C1(s) 2 C2(t) are always linearly dependent;
therefore, Eq. (6) has no solution since the common denominator vanishes

Fig. 4. Two examples of the bisector surface of non-planar curves. In (a), the bisector surface
of two 360° arcs of an approximation of a helix is presented. In (b), the bisector of an open
quadratic and a periodic B-spline space curve is presented.
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identically:

D~s, t! 5 * x91~s! y91~s! z91~s!

x92~t! y92~t! z92~t!

x12~s, t! y12~s, t! z12~s, t! * ; 0. (10)

Given two rational space curves C1(s) and C2(t), the determinant D(s, t)
is a rational function of s and t. Thus the common denominator of Eq. (6)
vanishes for all (s, t) on the algebraic curve D(s, t) 5 0 in the st-parameter
space. As discussed above, when the two curves are coplanar, the solution
space of the algebraic curve D(s, t) 5 0 degenerates to the whole st-parameter
space. In the following discussion, we show that this coplanar case is the only
case in which the determinant vanishes identically: D(s, t) [ 0.

For a fixed s0, we first consider the cases in which D(s0, t) [ 0. Since the
curve C2(t) is rational, the determinant D(s0, t) is a rational function of t.
Therefore, the determinant is identically zero or has at most finitely many
solutions of t. We classify the degenerate cases in which the determinant
vanishes identically for all t. After that, by making the parameter s0
change arbitrarily (so that we have D(s, t) [ 0 for all s and t), we show
how each degenerate case reduces to a case in which the two curves C1(s)
and C2(t) are coplanar.

Case I. T1(s0) and T2(t) are parallel.

For a fixed tangent vector T1(s0), we consider the case in which the tangent
vector T2(t) is linearly dependent on T1(s0) for all t. The regularity of
C1(s) and C2(t) implies that T1(s0) Þ 0 and T2(t) Þ 0. Therefore, the two
vectors T1(s0) and T2(t) are parallel to each other for all t, and the curve

Fig. 5. Two examples of shaded (transparent) bisector surfaces. In (a), the bisector surface is
that of a straight line and a rounded square. In (b), the bisector surface is that of a straight
line and an ellipse.
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C2(t) must be a straight line which is parallel to the vector T1(s0). If the
same condition holds for all other values of s, the tangent vector field T1(s)
is parallel to the line C2(t); therefore, the curve C1(s) must be a straight
line which is parallel to the line C2(t). The two parallel lines determine a
unique plane. Consequently, the two curves C1(s) and C2(t) are coplanar.

Case II. C1(s0) 2 C2(t) and T2(t) are parallel.

We assume that T1(s0) and T2(t) are linearly independent, and consider
the case in which the three vectors T1(s0), T2(t), and C1(s0) 2 C2(t) are
linearly dependent. We assume that C1(s0) 2 C2(t) Þ 0, for all t, and
consider the case in which the two vectors C1(s0) 2 C2(t) and T2(t) are
linearly dependent. (Case III will consider the case in which C1(s0) 2 C2(t)
and T2(t) are linearly independent.) Since the regularity of C2(t) implies
T2(t) Þ 0, we have

C1~s0! 2 C2~t! 5 a~t!T2~t!, (11)

for some a(t) [ 5. That is,

C1~s0! 5 C2~t! 1 a~t!T2~t!,

which means that the point C1(s0) is in the tangent line of C2(t). If the
relation holds for all t, the curve C2(t) must be a radial straight line
emanating from the point C1(s0). Moreover, if this relation holds for all
other values of s, the curve C1(s) must be contained in the same straight
line as C2(t). Therefore, the two curves are collinear.

Case III. (C1(s0) 2 C2(t)) 3 T2(t) is orthogonal to T1(s0).

We consider the case in which C1(s0) 2 C2(t) and T2(t) are linearly
independent; that is, the case in which the two vectors C1(s0) 2 C2(t) and
T2(t) span a plane, and equivalently, we have (C1(s0) 2 C2(t)) 3 T2(t) Þ
0. When the three vectors T1(s0), T2(t), and C1(s0) 2 C2(t) are linearly
dependent, the vector T1(s0) must be contained in the plane spanned by
the two vectors C1(s0) 2 C2(t) and T2(t), and equivalently, we have the
following relation:

^T1~s0!, ~C1~s0! 2 C2~t!! 3 T2~t!& 5 0. (12)

Consequently, the vector field (C1(s0) 2 C2(t)) 3 T2(t) is always orthogo-
nal to the fixed vector T1(s0). Note that the vector field (C1(s0) 2 C2(t)) 3
T2(t) is parallel (though in the opposite direction) to the normal vector of
the conical surface S(r, t) which is generated by connecting the origin and
each point of the curve C1(s0) 2 C2(t) by a straight line:

S~r, t! 5 $r~C1~s0! 2 C2~t!! ur, t [ 5%.
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The surface normal of S(r, t) is given by

­S

­r
~r, t! 3

­S

­t
~r, t! 5 ~C1~s0! 2 C2~t!! 3 ~2rT2~t!!

5 2r~C1~s0! 2 C2~t!! 3 T2~t!.

Therefore, the constraint: ^T1(s0), (C1(s0) 2 C2(t)) 3 T2(t)& 5 0 implies
that the conical surface S(r, t) must be a cylindrical surface or a plane
(whose surface normal is always orthogonal to the vector T1(s0)). We
consider the two special cases as follows:

(1) In the cylindrical case, the apex at the origin is on each ruling of the
cylindrical surface. Thus the surface S(r, t) degenerates to a straight
line which emanates from the origin. By taking r 5 21, we realize that
the curve C2(t) 2 C1(s0) is on the straight line which emanates from
the origin. This means that the curve C2(t) is a straight line which
contains the point C1(s0). If this relation holds for all other values of s,
the two curves C1(s) and C2(t) must be collinear lines.

(2) The other possible case is when the curve C1(s0) 2 C2(t) is contained
in a plane which passes through the origin. That is, the curve C2(t) is a
planar curve and the point C1(s0) is contained in the same plane. If this
relation holds for all other values of s, the two curves C1(s) and C2(t)
must be coplanar.

3. BISECTOR SURFACE OF A POINT AND A SPACE CURVE

3.1 Rational Representation of a Ruled Bisector Surface

In this section, given a point and a space curve, we construct their bisector
as a rational ruled surface. Let Q 5 (qx, qy, qz) be a fixed point and C(t) 5
( x(t), y(t), z(t)) be a regular parametric C1-continuous space curve. Then,
T(t) 5 ( x9(t), y9(t), z9(t)) is a non-zero continuous tangent vector field
along C(t).

Let P be a bisector point of C(t) and Q with its foot points at C(t0) and Q,
respectively. Then, the point P is contained in the normal plane L(t0) of
C(t) at C(t0) and also in the bisector plane Lb(t0) of the two points C(t0)
and Q. The two planes L(t0) and Lb(t0)intersect in a line l(t0). Every point
in the intersection line l(t0) has the same foot point C(t0) on the curve
C(t). Since each point C(t0) contributes a line on the bisector surface, the
overall bisector becomes a ruled surface. We now show that this surface is
also rational.

Let N(t) be the direction vector of the intersection line l(t) between two
planes L(t) and Lb(t). Since vector N(t) is contained in both L(t) and Lb(t),
it is orthogonal to the normal vectors of L(t) and Lb(t). Therefore, we can
construct N(t) by computing the cross product of the two normal vectors:

N~t! 5 T~t! 3 ~C~t! 2 Q!,
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which is a rational vector field.
To represent the bisector surface as a rational ruled surface, we also need

to construct a rational directrix curve P(t) on the bisector surface. A
natural choice of P(t) is the closest point of l(t) to Q. Toward this goal, we
construct an auxiliary plane Ln(t) which passes through the fixed point Q
and is orthogonal to the line l(t) (i.e., the direction vector N(t)). The points
P in the plane Ln(t) satisfy the following linear equation:

Ln~t!: ^P 2 Q, N~t!& 5 0,

which is rational in t. The common intersection point P of three planes:
L(t), Ln(t), and Lb(t) can be computed by solving the following simulta-
neous linear equations in P (see also Eq. (4)):

^P, T~t!& 5 ^C~t!, T~t!&,

^P, N~t!& 5 ^Q, N~t!&,

^P, C~t! 2 Q& 5
iC~t!i2 2 iQi2

2
. (13)

Then, we have the following matrix equation,

3 x9~t! y9~t! z9~t!

xn~t! yn~t! zn~t!

xb~t! yb~t! zb~t!
4 3 px

py

pz
4 5 3 d1~t!

d2~t!

m~t!
4 , (14)

where

P 5 ~ px , py , pz!,

N~t! 5 ~ xn~t!, yn~t!, zn~t!!,

d1~t! 5 ^C~t!, T~t!& 5 x~t! x9~t! 1 y~t! y9~t! 1 z~t! z9~t!,

d2~t! 5 ^Q, N~t!& 5 qxxn~t! 1 qyyn~t! 1 qzzn~t!,

m~t! 5
iC~t!i2 2 iQi2

2
,

~ xb~t!, yb~t!, zb~t!! 5 ~ x~t! 2 qx , y~t! 2 qy , z~t! 2 qz!.
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By Cramer’s rule, Eq. (14) can be solved as follows:

px 5

* d1~t! y9~t! z9~t!

d2~t! yn~t! zn~t!

m~t! yb~t! zb~t! *
* x9~t! y9~t! z9~t!

xn~t! yn~t! zn~t!

xb~t! yb~t! zb~t! *
,

py 5

* x9~t! d1~t! z9~t!

xn~t! d2~t! zn~t!

xb~t! m~t! zb~t! *
* x9~t! y9~t! z9~t!

xn~t! yn~t! zn~t!

xb~t! yb~t! zb~t! *
,

pz 5

* x9~t! y9~t! d1~t!

xn~t! yn~t! d2~t!

xb~t! yb~t! m~t! *
* x9~t! y9~t! z9~t!

xn~t! yn~t! zn~t!

xb~t! yb~t! zb~t! *
. (15)

Once the rational directrix curve P(t) and the rational vector field N(t) are
obtained, the rational ruled bisector surface P(s, t) can be constructed as
follows:

P~s, t! 5 P~t! 1 sN~t!, for s, t [ 5.

The directrix curve P(t) 5 ( px(t), py(t), pz(t)) has a rational represen-
tation as long as the common denominator of px, py, and pz in the above
equation does not vanish. That is, the three vectors T(t), N(t), and C(t) 2
Q must be linearly independent so that the coordinate functions px(t),
py(t), and pz(t) are well-defined and rational. Since the vector N(t) is the
cross product of T(t) and C(t) 2 Q, the three vectors are linearly
independent as long as the two vectors T(t) and C(t) 2 Q are linearly
independent.

We assume that C(t) 2 Q Þ 0 and consider the degenerate case in which
the two vectors T(t) and C(t) 2 Q are linearly dependent. The regularity of
C(t) implies that T(t) Þ 0; therefore, the two vectors Q 2 C(t) and T(t)
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must be parallel to each other, and we have

Q 2 C~t! 5 a~t!T~t!,

for some a(t) [ R. Then, the condition: Q 5 C(t) 1 a(t)T(t) implies that
the point Q is on the tangent line of C(t) for all t. This means that the
curve C(t) is a straight line which emanates from Q. Therefore, the point Q
and the curve C(t) must be collinear.

3.2 Examples of Ruled Bisector Surfaces

Figures 6 and 7 show two examples of the bisector surface of a curve and a
point. In Figure 6, a cubic planar Bézier curve is shown that is also
coplanar with the given point, resulting in a ruled surface that degenerates
into a cylindrical surface. (See Section 3.3 for more details.) In contrast,
Figure 7 shows the bisector ruled surface of a general space curve and a
point.

3.3 Bisector Curve of a Point and a Planar Curve

Given a point and a rational curve in the plane, Farouki and Johnstone
[1994a] showed that their bisector curve is rational. When we consider the
bisector surface of a point Q and a rational curve C(t) in the xy-plane, the
two planes L(t) and Lb(t) are always orthogonal to the xy-plane and the
plane Ln(t) is the same as the xy-plane. Therefore, the directrix curve P(t)
is the same as the rational bisector curve generated by Farouki and
Johnstone [1994a]. Moreover, the ruling line l(t) (which is the intersection

Fig. 6. The bisector surface of a cubic Bézier planar curve and a coplanar point (both shown
in gray) is a cylindrical surface. In light gray, the coplanar isoparametric curve of the bisector
surface (which is contained in the same plane) is shown. This isoparametric curve is, in fact,
the planar bisector curve of the planar curve and the point.

46 • G. Elber and M.-S. Kim

ACM Transactions on Graphics, Vol. 17, No. 1, January 1998.



of two planes: l(t) 5 L(t) ù Lb(t) is always orthogonal to the xy-plane.
Therefore, the bisector surface P(s, t) is a cylindrical surface in which P(t)
is its directrix curve and all the ruling lines are parallel to the z-axis. (See
Figure 6 for such an example.) The cylindrical surface is a special case of
developable surface. An interesting question is: “what are the special cases
of the point-curve bisector problem in which the bisector surface is a
developable surface?” We leave this question as an open problem that may
hopefully be answered in the future.

Moreover, this case of a planar point-curve bisector is also a special case
of the bisector surface of two space curves, in which one curve is given as a
planar curve and the other curve is given as an orthogonal line to the
plane. Consider a planar curve C1(s) that is given in the xy-plane, and the
line C2(t) that is parallel to the z-axis and also passes through a given
point Q in the xy-plane. Let t0 be the parameter value such that Q 5
C2(t0). Then, on the bisector surface P(s, t), the isoparametric curve P(s,
t0) is the same as the bisector curve of C1(s) and Q in the xy-plane. Figure
8 shows such an example (see also Farouki and Johnstone 1994a).

The bisector of two planar rational curves is not rational, in general.
However, we can approximate the bisector by rotating one planar curve by
a certain small angle e out of the plane (or both curves in the opposite
directions), and computing the intersection of the bisector surface with the
plane containing the two curves. Figure 9 shows such an example of this
approach, where a rotation of degree 1° is applied to one planar curve.
Another approach is to translate one planar curve along the normal

Fig. 7. The bisector surface of a point and a helical curve (both shown in gray) is, in fact, a
ruled surface.
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direction of the plane by a small distance e, compute the bisector surface,
and finally intersect the bisector surface with the given plane. The numer-
ical stability of these approaches is yet to be evaluated.

4. CONCLUSIONS

In this article, we have shown that the bisector of two rational space curves
is a rational surface (except for the degenerate case in which the two curves
are coplanar). Given a point and a rational space curve, the bisector surface
is shown to be a rational ruled surface. Moreover, given a point and a

(a) (b)

Fig. 8. The special case of bisector for a planar curve versus a point (shown in (a)) can be
derived from the bisector surface of the planar curve and a line orthogonal to the plane, and
considering only the proper isoparametric curve in the plane (in gray). (a) A planar point-
curve bisector. (b) The bisector surface of the z-axis and a planar parabolic curve.

Fig. 9. The bisector (bold curves) of two planar curves (light curves) can be approximated by
computing the intersection of the plane containing the two curves with the bisector surface of
the two curves rotated out of the plane by e degrees. In this example, we take e 5 degree 1°.
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rational planar curve in the same plane, the bisector is a rational cylindri-
cal surface which is orthogonal to the plane.

All the examples in this article were computed in a fraction of second on
a 150MHz R4000 SGI Indy system, while using tools implemented on the
IRIT [1996] modeling system that is developed at the Technion, Israel.
Hence, the capability of efficiently constructing a rational surface (respec-
tively, a rational ruled surface), given a prescription of curves and/or
points, has great potential in geometric modeling. Further work is required
to investigate the representational power of rational bisectors (of points,
curves, and surfaces) and the possibility of exploiting them in surface
modeling. The geometric intuition in using two control curves may suggest
the bisector surface as a useful surface construction scheme much like
sweeping or extrusion operations. Based on the result of this article, this
new direction of surface design paradigm seems plausible not only for
geometric modeling but also for geometric analysis, in general.

We are currently investigating the extendibility of this methodology to
other rational varieties (including those in high-dimensional spaces) and
the usage of rational bisectors in formulating, solving, and/or simplifying
various geometric problems.
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