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We present a direct manipulation tech-
nique that allows interactive control of
the shape of generalized cylinders. We in-
terpret the generalized cylinder as the
sweep surface of a planar cross-sectional
B-spline curve under B-spline motion.
The generated surface is a NURBS surface
that interpolates a given sequence of cross-
sectional curves along a skeleton curve. Di-
rectly manipulating a surface point on the
generalized cylinder modifies the cross-
sectional shape and its motion and deforms
the generalized cylinder to interpolate the
exact point location specified by the user.
The surface is deformed by a target track-
ing procedure.
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1 Introduction

Advanced techniques for modeling realistic and
complex 3D shapes are important in computer
graphics and animation. There has been much re-
search effort in developing such techniques. As a
result, commercial systems such as 3Design pro-
vide various handy tools for shape design [25].
Many of these tools are based on sweeping tech-
niques. In fact, even simple sweeping techniques,
such as linear extrusion and rotational sweeping,
are among the tools most frequently used for de-
signing 3D shapes.
Generalized cylinders provide a useful tool for the
modeling and animation of flexible objects with
tubular shape [14]. Using effective shape control
techniques for generalized cylinders, the user can
design natural shapes such as trees, arms, legs,
and bodies with great ease. This paper presents
such a technique. It allows the user to interactively
control the shape of generalized cylinders by di-
rectly manipulating surface points on the general-
ized cylinders.
Given a 2D cross-sectional curve and a 3D skele-
ton curve, the generalized cylinder is defined as
the sweep surface of the cross-sectional curve
moving along the skeleton curve. The cross-sec-
tional curve may change its shape dynamically.
However, in most conventional methods, the
cross-sectional plane is restricted to be orthogonal
to the tangent direction of the skeleton curve. Be-
cause of this constraint, direct manipulation of
generalized cylinders is a nontrivial task. It is very
difficult to manipulate the skeleton curve while
keeping it orthogonal to each cross-sectional plane.
In conventional methods [4, 6, 14, 24], the Frenet
moving frame is used to define the local coordi-
nates on each cross-sectional plane. That is to
say, the unit normal and binormal vectors are used
to form the basis of each cross-sectional plane.
These unit vectors are nonrational in general. Con-
sequently, the generalized cylinders based on these
vectors are also nonrational, even if the cross-sec-
tional and skeleton curves are both rational.
In this paper, we eliminate these difficulties by re-
laxing the definition of generalized cylinders so
that an arbitrary moving frame can be used in de-
fining the local coordinates of each cross-sectional
plane. We interpret the generalized cylinder as a
smooth deformation of a cylinder, in which each
cross-sectional curve is obtained by a smooth de-
formation of the circle. The deformation of
cross-sectional curves can be represented as a gen-
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eralized linear extrusion in which each cross-sec-
tional curve changes its shape dynamically while
moving along the direction of extrusion. Each
cross-section is then placed along the skeleton
curve by an appropriate euclidean motion (i.e.,
with translation and rotation). In our definition of
the generalized cylinder, a cross-sectional plane
may not necessarily be orthogonal to the skeleton
curve. The shape, position, and orientation of each
cross-sectional curve can be controlled indepen-
dently, which makes a direct manipulation of gen-
eralized cylinders significantly easier.
Jüttler and Wagner [13] introduced the B-spline
motion that represents a 3D euclidean motion by
a 4�4 matrix (in homogeneous coordinates), each
element of which is given as a B-spline function.
An arbitrary point under a B-spline motion gener-
ates a rational B-spline curve. Moreover, the cross-
sectional B-spline curve under a B-spline deforma-
tion, as well as a B-spline motion, generates a ten-
sor-product rational B-spline sweep surface. By
defining all underlying geometric, kinematic, and
deformation components with B-spline basis func-
tions, we can represent the generalized cylinder as
a NURBS surface that can be supported in conven-
tional CAD systems. In most previous methods,
the generalized cylinders have nonrational forms;
thus it is necessary to approximate them with many
polygons or B-spline surface patches for CAD data
exchange.
When the user directly manipulates a surface point
on the generalized cylinder, the positional change
of the surface point is converted into the corre-
sponding changes in the shape, position, and orien-
tation of a cross-sectional curve. Given a cross-
sectional curve, its deformation and spatial motion
determine the surface shape of a generalized cylin-
der. Each surface point is thus given as the result
of a transformation that maps the deformation
and motion parameters (of the cross-sectional
curve) into the surface point. As the user moves
the surface point into a new location, the underly-
ing deformation and motion parameters (of the
cross-sectional curve) must be updated so that
the new surface point is interpolated by a deformed
generalized cylinder. This is based on a numerical
iteration procedure similar to those used in target
tracking [15]. This technique has been implement-
ed on a Pentium II PC (266 MHz). The implement-
ed system gives real-time performance while sup-
porting the interactive design of generalized cylin-

ders. Some illustrative examples are given in this
paper.
The rest of this paper is organized as follows. In
Sec. 2, we briefly review previous work. In Sect. 3,
we present some mathematical preliminaries for B-
spline motion. Section 4 explains our mathematical
model of generalized cylinders based on the B-
spline motion. Section 5 presents a technique for
direct manipulation of generalized cylinders. Some
experimental results and illustrative examples are
also demonstrated in this section. Finally, in
Sect. 6, we conclude this paper.

2 Previous work

The generalized cylinder was first introduced in
computer vision for the purpose of modeling and
recognizing 3D shapes (such as airplanes, snakes,
horses, and dolls) based on a few simple procedur-
al rules [1]. Shani and Ballard [20] present a good
survey on the early development of generalized
cylinders in computer vision. Compared with other
explicit object-representation schemes such as
boundary representation (B-rep), procedural de-
scriptions make the shape recognition task signifi-
cantly easier since shape features can be described
better with procedural rules.
The procedural way of modeling generalized cyl-
inders also provides similar advantages in comput-
er graphics and geometric modeling. We can de-
scribe complex 3D shapes using a few simple pro-
cedural rules in a compact way; thus one can re-
duce the size of the object database. Unfortunately,
most conventional methods generate generalized
cylinders as nonrational surfaces. Consequently,
one needs to develop special algorithms for the
display and geometric processing of generalized
cylinders. Bronsvoort [2] and Bronsvoort and Klok
[3] develop display algorithms for generalized cyl-
inders. Note that the display algorithms essentially
compute the intersection of a generalized cylinder
with a line (in ray tracing) or a plane (in surface
scanning). Thus, it is relatively easier to develop
display algorithms than many other geometric al-
gorithms (e.g., surface/surface intersection) for
generalized cylinders.
It is unreasonable to develop special algorithms for
every single geometric problem applied to general-
ized cylinders. A more reasonable approach would
be either to approximate the generalized cylinders
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with rational surfaces or to redefine them as ratio-
nal surfaces. Then we can apply a variety of geo-
metric algorithms that have been developed for ra-
tional surfaces such as NURBS surfaces. The first
approach was taken previously by many authors
such as Bronsvoort and Waarts [4], Coquillart
[6], and Kim et al. [14]. Recently, Johnstone and
Williams [11] and Jüttler [12] use rational motions
to design rational sweep surfaces (in which the
moving curve has a fixed shape). It is quite
straightforward to extend these results to include
a smooth rational deformation of the cross-section-
al curve in the formulation of these sweep surfaces.
In this paper, we assume the definition of general-
ized cylinders based on this extension of rational
sweep surfaces.
Given a sequence of cross-sectional curves Ci ly-
ing on the planes z=zi (parallel to the xy-plane),
Shinagawa and Kunii [22] suggest a homotopy-
based method that interpolates these curves by
blending each pair of two consecutive cross-sec-
tions. The resulting surface is a generalization of
linear extrusion in which the 2D cross-section
changes its shape dynamically while the extrusion
is carried out along the z direction. By mapping
each 2D cross-section (of the generalized linear
extrusion) to the normal plane of a skeleton curve,
Tai et al. [24] present a homotopy sweep method
that generates a generalized cylinder interpolating
a given sequence of cross-sectional curves with ar-
bitrary shape.
In this paper, we assume that the cross-sectional
curves are given as rational curves of the same de-
gree and knot sequence (by applying degree eleva-
tion and knot insertion if necessary). These curves
can be interpolated by a rational skinning surface
[17]. Each cross-section of this skinning surface
represents the shape deformation of the cross-sec-
tional curve. The placement of each cross-sectional
curve along the skeleton curve is given by a B-
spline motion that is totally independent of the
skeleton curve. In some sense, our representation
scheme of generalized cylinders is closely related
to the modeling techniques of Shinagawa and Ku-
nii [22] and Tai et al. [24]. The main difference,
however, is that our approach is motivated by ra-
tional representation of generalized cylinders
based on a recent development of B-spline motion
technique [13].
Direct manipulation enhanced with appropriate 3D
widgets provides an effective user interface for

manipulating 3D objects [23]. Grimm et al. [9] de-
velop various interface tools for directly manipu-
lating free-form 3D objects, in particular, those
for simple sweep, warp, and blend operations.
However, they have not included a functionality
that can directly manipulate surface points on a
sweep surface. Post and Klok [18] provide a defor-
mation method for sweep-defined polyhedral sur-
faces. The shape control is restricted to the cross-
sectional planes given at some discrete locations
along the skeleton curve. Therefore, it is a chal-
lenging task to develop a technique that can auto-
matically modify the shape of a sweep surface (or
a generalized cylinder) when the user moves an ar-
bitrary surface point to a new location.
Hsu et al. [10] suggest a direct manipulation tech-
nique for free-form objects defined by free-form
deformation (FFD). An FFD method deforms an
enclosing space of an object so as to apply a lo-
cal/global shape change to the object [19]. The
FFD involves a mapping (from R3 to R3) that is
represented by a trivariate tensor product free-form
volume. A direct manipulation of FFD objects is
based on a nonlinear inversion of this mapping.
Lee at al. [16] apply a similar technique (based
on a multilevel FFD) to generate a smooth transi-
tion (morphing) of an image to a target image.
The main difference between the direct manipula-
tion scheme based on FFDs and our approach in
this paper is in the nonlinear mapping involved
in the shape transformation of an object. In our
motion-based approach, the mapping is from a
configuration space (of the sweep motion) to the
workspace R3. To realize a direct manipulation of
a sweep surface, the positional change of a surface
point must be inverted to the corresponding change
of the sweep motion (represented as a curve in the
configuration space). A sweep motion consists of
three basic components: translation, rotation, and
scaling. Because of the noneuclidean structure of
3D rotations, the nonlinear inversion is more com-
plex than the case of FFD-based methods. Never-
theless, the basic approach is similar.
There are some other previous works related to our
approach. Gleicher and Witkin [7] suggest a tech-
nique called differential manipulation as a general
solution method for directly manipulating geomet-
ric objects under constraints. This technique can be
applied to the direct manipulation of generalized
cylinders with appropriate nonlinear constraints.
Gleicher and Witkin [8] show that, using a similar
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technique, the virtual camera can be controlled by
directly manipulating image points on the display
screen. Recently, Kyung et al. [15] suggest a sim-
pler method for virtual camera control based on a
target tracking procedure. In this paper, we apply
a similar technique for the direct manipulation of
generalized cylinders.

3 Mathematical preliminaries

In this section, we briefly review some mathemat-
ical preliminaries for B-spline motion. A B-spline
motion consists of its translational and rotational
components, both of which are represented in
B-spline forms. Let v t� � � 1

vw t� � vx t� �; vy t� �;ÿ
vz t� �� 2R3 be a rational B-spline curve of degree
d1, and r(t)=(rw(t), rx(t), ry(t), rz(t))ÎR4 be a poly-
nomial B-spline curve of degree d2, where vw(t),
vx(t), vy(t), vz(t), rw(t), rx(t), ry(t), rz(t) are all B-
spline functions. The 3D curve v(t) represents the
translational component of the motion. Moreover,
the unit quaternion curve q t� � � r t� �� r t� �k k 2 S3

represents the 3D rotational component [21]. Us-
ing v(t) and r(t), we can formulate a B-spline mo-
tion as a 4�4 matrix (in homogeneous coordi-
nates), each component of which is of degree
d1+2 d2:

M t� � �
vw t� �d t� � 0 0 0

vx t� �d t� �
vy t� �d t� � vw t� �D t� �
vz t� �d t� �

0BB@
1CCA; �1�

where

D t� � �
r2

w� r2
x ÿ r2

y ÿ r2
z 2 rxryÿ rwrz

ÿ �
2 rxrz� rwry
ÿ �

2 rxry� rwrz
ÿ �

r2
wÿ r2

x � r2
y ÿ r2

z 2 ryrzÿ rwrx
ÿ �

2 rxrzÿ rwry
ÿ �

2 ryrz� rwrx
ÿ �

r2
wÿ r2

x ÿ r2
y � r2

z

0B@
1CA;

d t� � � r2
w� r2

x � r2
y � r2

z :

Since each element of M(t) is a B-spline polynomi-
al, we can obtain the control matrices {Ai} of M(t)
as follows:

M t� � �
Xn

i�0

Nd
i t� �Ai; �2�

where Nd
i t� � is the ith rational B-spline basis func-

tion of degree d [17]. The matrix Ai represents an

affine transformation, in general, even though the
matrix M(t) represents a rigid 3D euclidean mo-
tion. Note that the trace of an arbitrary point p un-
der a B-spline motion M(t) generates a rational B-
spline curve

p(t)=M(t)´p.

The first column of M(t) has d(t) as a common fac-
tor. When we divide each element of M(t) by
vw(t) d(t), we realize that the translational and rota-
tional components of the motion M(t) are indepen-
dent. Jüttler and Wagner [13] formulate the matrix
representation of B-spline motion somewhat dif-
ferently, so that the overall degree can be reduced.
We skip the details of constructing the B-spline
motion matrix from the B-spline representations
of v(t) and r(t). See Chang [5] and Jüttler and
Wagner [13] for more details.

4 The generalized cylinder based
on B-spline motion

This section briefly explains our mathematical
model of generalized cylinders. The shape of each
cross-sectional curve is determined (with a smooth
deformation) and the cross-sectional plane is then
placed at appropriate position and orientation in
a B-spline motion (see Eq. 2):

M t� � �
Xn

i�0

Nd
i t� �Ai:

The sweep of a rational B-spline curve C(u) under
the B-spline motion M(t) generates a tensor prod-
uct rational B-spline surface:

S(u, t)=M(t)´C(u).

When we take a 2D cross-sectional closed curve
C(u) and apply a B-spline affine transformation
A(t) to C(u), we get a deformed cross-sectional
B-spline curve:

Ct(u)=A(t)´C(u).

A simple special case of A(t) includes the xy scal-
ing that can be represented by a diagonal matrix.
Note that, in conventional methods, the xy scaling
is the most popular deformation for cross-sectional
curves. In the most general case, we may apply a
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general deformation D(t) to C(u) and get a free-
form closed B-spline curve:

Ct(u)=D(t)´C(u).

When we sweep the 2D curve Ct(u)=(xt(u), yt(u))
along the t-axis (orthogonal to the xy-plane), we
get a B-spline surface of generalized linear extru-
sion in the xyt space:

C(u, t)={(xt(u), yt(u), t)|0£u, t£1}.

The axis of this surface is

l(t)={(0, 0, t)|0£t£1}.

Under the B-spline motion M(t), this linear axis l(t)
will be transformed into the skeleton (rational) B-
spline curve v(t) of the generalized cylinder:

v(t)=M(t)´(1, 0, 0, 0)t,

where (1, 0, 0, 0)t is the coordinate of the origin
(0, 0, 0)t in homogeneous coordinates. The gener-
alized cylinder itself is given as a tensor product
rational B-spline sweep surface:

S(u, t)=M(t)´Ct(u).

Figure 1 shows a surface of revolution. The cross-
sectional curves are circles of different radii. Uni-
form scaling is applied to the deformation of each
cross-sectional curve. In Fig. 2, each cross-section-
al curve has a different shape. Using a skinning
surface that interpolates a given sequence of
cross-sectional curves, we can generate a general-
ized linear extrusion. When we deform this surface
so that its main axis transforms into an arbitrary
skeleton curve and each cross-sectional plane is
placed at appropriate position and orientation
along the skeleton curve, we can generate a gener-
alized cylinder.

1a 1b

2a 2b

Fig. 1a, b. Generalized cylinder with cross-sectional circles

Fig. 2a, b. Generalized cylinder with variable cross-sections
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5 Shape control of generalized
cylinders

In this section, we describe how to control the
shape of a generalized cylinder by directly manip-
ulating an arbitrary surface point. As the user
moves a surface point into a new position, the
change in the point location is transformed into
the corresponding changes in the shape of the
cross-sectional curve and the position and orienta-
tion of the cross-sectional plane.
When the user selects a surface point p on the gen-
eralized cylinder S(u, t), the point p is on a cross-
sectional curve Ct(u). As we move the point p into
a new location p̂; the shape, position, and orienta-
tion of the cross-sectional curve Ct(u) must be
modified so that the new surface Ŝ u; t� � interpo-
lates the point p̂.
The shape of Ct(u) can be modified by changing
(1) an affine transformation A(t) of Ct(u)=A(t)´
C(u), and/or (2) the shape of C(u) itself or, in the
most general case, by changing (3) the generalized
linear extrusion C(u, t). The position and orienta-
tion of Ct(u) can be modified by changing the B-
spline motion M(t).
To construct a generalized cylinder S(u, t), we
need basic components such as v(t), r(t), A(t),
C(u), and/or C(u, t). When a surface point
p=S(u0, t0) is relocated to p̂; the corresponding
points v(t0), r(t0), A(t0), C(u0), and C(u0, t0) must
be changed to new locations v̂ t0� �;r̂ t0� �; Â t0� �;
Ĉ u0� �; and Ĉ u0; t0� � so that the modified surface
Ŝ u; t� � can be constructed from the deformed basic
components v̂ t� �; r̂ t� �; Â t� �; Ĉ u� �; and Ĉ u; t� �: Fig-
ure 3 illustrates the deformation procedure of a
generalized cylinder through the deformation of
each basic component.
The relationship between the generalized cylinder
and its basic components is highly nonlinear.
Therefore, it is nontrivial to get a closed form so-
lution for the required deformation of each basic
component. In this paper, we apply a numerical it-
eration procedure that is based on target tracking.
In each iteration, we modify one basic component
so that the surface point S(u0, t0) moves a little
closer to the target point p̂: The basic component,
say v(t), is deformed so that it interpolates the new
location of v(t0). The deformation of a basic com-
ponent can be done by relocating some of its B-
spline control points [17].

Note that the modification of one basic component
at a time requires solving a simple linear equation.
When a surface point moves from p to p̂; one can
interpolate the new surface location by moving
v(t0) to v̂ t0� � � v t0� �� p̂ÿp: In the case of modi-
fying the basic component A(t) or C(u), we need to
project the point p̂ into the cross-sectional plane at
time t0 under the assumption that the deformation
is carried out on the cross-sectional plane only.
The case of rotation curve r(t) is slightly more dif-
ficult to deal with. We first project p̂ into a point ~p
on the sphere with center at v(t0) and radius
kp�v(t0)k. There is a well-defined rotation of this
sphere that transforms p to ~p: This rotation can
be represented by a unit quaternion q. By applying
this rotation to r(t0), we get a new location r̂ t0� � of
the rotation curve. (See Chang [5] for more de-
tails.)
Figure 4 shows the effect of changing the position
of Ct(u). As the user moves a surface point to a
new location, the translational component v(t) of
the B-spline motion M(t) is modified appropriate-
ly. In Fig. 5, the shape and position of Ct(u) are
fixed, and only the orientation of Ct(u) changes
as the user manipulates a surface point on the
curve Ct(u). Figure 6 shows the case of A(t) being
a uniform scaling for each cross-sectional curve
Ct(u); that is, we have

Ct(u)=A(t)´C(u)=a(t) C(u)

for some scalar function a(t). As the user manipu-
lates a surface point, the scaling function a(t) is
modified appropriately. In Fig. 7, the deformation
is applied to the initial cross-sectional curve C(u)
itself rather than to the affine transformation A(t)
of the cross-sectional curve Ct(u)=A(t)´C(u). Note
that the shape change in one cross-sectional curve
affects all cross-sectional curves. Figure 8 shows
the case of restricting the shape change of C(u)
to a limited range of t. The result is similar to an
interactive surface editing of the generalized linear
extrusion C(u, t).
These control schemes can be combined; e.g., we
can combine the changes in the scaling and rota-
tion of Ct (u) in the same mode of direct manipula-
tion. In general, we can define the total degrees of
freedom (DOF) for the deformation and motion of
Ct(u). Given a surface point movement from p to
p̂; we subdivide the shape control in n steps; i.e.,
from piÿ1 � p� iÿ1

n p̂ÿp� � to pi � p� i
n p̂ÿp� �;
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for i=1, .... , n. At each step, we may apply the
shape deformation, translation, and rotation of
Ct(u) consecutively. The overall numerical pro-
cedure is a target tracking in which the surface
point S(u, t) keeps track of its target point p̂ that
the user manipulates. (Kyung et al. [15] present-
ed a similar target tracking procedure for the con-
trol of a virtual camera.) After the shape, posi-
tion, and orientation of Ct(u) has been modified,
the overall shape of C(u, t) and the euclidean mo-
tion M(t) are also modified so that the underlying
B-spline representations for C(u, t) and M(t)
smoothly interpolate the new cross-sectional
curve Ct(u). Figure 9 shows a sequence of smooth

deformation of a generalized cylinder that dem-
onstrates a target tracking procedure. Figure 10
presents some examples of direct manipulation
for a toroidal surface. Figure 11 shows an exam-
ple of a fish-shaped 3D object created with our
system. This object consists of several general-
ized cylinders represented with trimmed NURBS
surfaces. The trimming was done by a NURBS
surface editor. The whole design process took on-
ly a couple of minutes, starting with circular cyl-
inders and deforming and trimming them to the
final fish-shaped object.

Fig. 3. Deformation procedure for a generalized cylinder
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Fig. 4. Translation curve deformation

Fig. 5. Rotation curve deformation

Fig. 6. Scale curve deformation

Fig. 7. Cross-sectional curve deformation

Fig. 8. Variable cross-section surface deformation

4

5

6

7

8
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Fig. 9. Smooth deformation based on target tracking
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a

Fig. 10a±f. Direct manipulation of a toroidal surface: a an initial torus; b translation control; c translation and
rotation control; d scaling control; e changing the shape of C(u); f changing variable cross-sections

b

c d

e f
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6 Conclusion

In this paper, we presented a direct manipulation
technique for generalized cylinders. It was non
trivial to develop such a technique with conven-
tional methods due to the constraint of restricting
the cross-sectional plane to the normal plane of
the skeleton curve. To eliminate this difficulty,
we redefined the generalized cylinder as a smooth
transformation of a cylindrical surface to a sweep
surface with tubular shape. When the user directly
manipulates a surface point on the generalized cyl-
inder, the basic components are updated so that a
reconstructed generalized cylinder interpolates
the surface point at a new location. For this pur-
pose, we use an iterative numerical procedure

based on a target tracking technique. Our imple-
mentation on a Pentium II PC (266 MHz) provides
real-time performance.
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