

L A N G U A G E

TUTORIAL
and
COOKBOOK

ADOBE SYSTEMS
I N C O R P O R A T E D

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts • Menlo Park, California
Don Mills, Ontario • Wokingham, England • Amsterdam
Sydney • Singapore • Tokyo • Madrid
Bogotá • Santiago • San Juan

Library of Congress Cataloging in Publication Data

Main entry under title:

Postscript language tutorial and cookbook.

Includes index.
1. PostScript (Computer program language)

I. Adobe Systems.
QA76.73.P67P68 1985 005.13′3 85-15694
ISBN 0-201-10179-3

Copyright 1985 by Adobe Systems Incorporated.

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission
of the publisher.
Printed in the United States of America.
Published simultaneously in Canada.

POSTSCRIPT is a trademark of Adobe Systems Incorporated.

Times is a trademark and Helvetica is a registered trademark of
Allied Corporation.

Linotron 101 is a registered trademark of Allied Corporation.
Scribe and UNILOGIC are registered trademarks of UNILOGIC, Ltd.
Apple, AppleTalk, and MacTerminal are trademarks of

Apple Computer, Inc.
Macintosh is a trademark licensed to Apple Computer, Inc.

The information in this book is furnished for informational use only, is
subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or
inaccuracies that may appear in this book. The software described in
this book is furnished under license and may only be used or copied in
accordance with the terms of such license.

ABCDEFGHIJ-HA-898765
Second printing: December 1985

iv

Contents

PREFACE ix

POSTSCRIPT LANGUAGE

TUTORIAL

CHAPTER 1 INTRODUCTION

1.1 POSTSCRIPT as a Page Description Language 1

1.2 POSTSCRIPT as a Programming Language 4

CHAPTER 2 STACK AND ARITHMETIC

2.1 The POSTSCRIPT Stack 7

2.2 Arithmetic 8

2.3 Interactive Stack Operators 12

2.4 New Operator Summaries 14

2.5 Operator Summary 15

CHAPTER 3 BEGINNING GRAPHICS

3.1 Drawing Lines 18

3.2 Filled Shapes 22

3.3 Operator Summary 25

CHAPTER 4 PROCEDURES AND VARIABLES

4.1 POSTSCRIPT Dictionaries 27

4.2 Defining Variables and Procedures 28

4.3 Using Procedures and Variables 30

4.4 Operator Summary 33

CHAPTER 5 PRINTING TEXT

5.1 POSTSCRIPT Fonts 35

5.2 Printing Variety 38

5.3 Operator Summary 46

v

CHAPTER 6 MORE GRAPHICS

6.1 Coordinate Systems 47

6.2 Graphics State 50

6.3 Curves 53

6.4 Operator Summary 60

CHAPTER 7 LOOPS AND CONDITIONALS

7.1 Conditional Execution 62

7.2 Loops 67

7.3 Operator Summary 76

CHAPTER 8 ARRAYS

8.1 POSTSCRIPT Arrays 77

8.2 Array Operators 78

8.3 Operator Summary 86

CHAPTER 9 MORE FONTS

9.1 Different Shows 87

9.2 Character Encoding 91

9.3 Font Transformations 94

9.4 Character Outlines 97

9.5 Operator Summary 100

CHAPTER 10 CLIPPING AND LINE DETAILS

10.1 Clipping Path 101

10.2 Line-Drawing Details 104

10.3 Operator Summary 110

CHAPTER 11 IMAGES

11.1 The image Operator 111

11.2 Operator Summary 117

CHAPTER 12 POSTSCRIPT PRINTERS

12.1 Apple LaserWriter 119

vi

POSTSCRIPT LANGUAGE

COOKBOOK

INTRODUCTION

FORMAT OF THE EXAMPLES 125

HOW TO USE THE COOKBOOK 126

BASIC GRAPHICS

ABOUT THE PROGRAMS 129

DICTIONARIES AND LOCAL VARIABLES 130

Program 1 / Repeated Shapes 135

Program 2 / Expanded and Constant Width Lines 137

Program 3 / Elliptical Arcs 139

Program 4 / Drawing Arrows 143

Program 5 / Centered Dash Patterns 147

Program 6 / Printing Images 151

PRINTING TEXT

ABOUT THE PROGRAMS 155

Program 7 / Printing with Small Caps 159

Program 8 / Setting Fractions 163

Program 9 / Vertical Text 167

Program 10 / Circular Text 169

Program 11 / Placing Text Along an Arbitrary Path 173

APPLICATIONS

ABOUT THE PROGRAMS 177

Program 12 / A Simple Line Breaking Algorithm 181

Program 13 / Making a Poster 185

Program 14 / Drawing a Pie Chart 189

Program 15 / Filling an Area with a Pattern 193

MODIFYING AND CREATING FONTS

MODIFYING EXISTING FONTS 199

CREATING NEW FONTS 200

ABOUT THE PROGRAMS 201

Program 16 / Making an Outline Font 205

Program 17 / Re-encoding an Entire Font 209

Program 18 / Making Small Changes to Encoding Vectors 213

Program 19 / Changing the Character Widths of a Font 217

Program 20 / Creating an Analytic Font 221

Program 21 / Creating a Bitmap Font 225

vii

FOR FURTHER REFERENCE 229

QUOTATIONS 231

APPENDIX OPERATOR SUMMARY

INDEX 241

viii

Preface

The POSTSCRIPT page description language provides a device in-
dependent standard for representing the printed page. This book
is designed to be a companion piece to the POSTSCRIPT Lan-
guage Reference Manual. It presents illustrative material to aid
in understanding the POSTSCRIPT language. The tutorial infor-
mation presented here has been deliberately separated from the
reference manual to help ensure that the defining document of-
fers a precise, unambiguous definition of the language and asso-
ciated graphics imaging model. In all cases, when questions of
definition or precise specification are raised, the POSTSCRIPT

Language Reference Manual is the final word.

This book actually contains two documents: the POSTSCRIPT

Language Tutorial and the POSTSCRIPT Language Cookbook.

The tutorial provides an easy, informal introduction to the
POSTSCRIPT language and its graphics primitives. The tutorial’s
style and level of presentation is aimed at programmers who
wish to design and implement applications, such as word
processing packages, graphics illustrators, and CAD/CAM draw-
ing systems. It is interactively oriented, and written with the as-
sumption that you, the reader, already know how to program.
You are encouraged to try variations of the examples presented
in the tutorial on a POSTSCRIPT printer as you work your way
through the book.

The cookbook is, as its name suggests, a collection of programs
that are offered as examples of POSTSCRIPT usage. These
samples have been chosen both as illustrations of the functional
range of POSTSCRIPT and as useful ingredients for inclusion in
application packages that you design. The cookbook samples
demonstrate techniques for rendering quality graphics, achieving
effective typography with digital fonts, and maintaining true
device independence. Again, you are encouraged to experiment
with variations of these samples on a POSTSCRIPT printer as you
develop your own applications.

ix

The principal authors of this material are Linda Gass and John
Deubert. The final organization and the majority of the material
for the POSTSCRIPT Language Tutorial is due to John Deubert.
Ed Taft reviewed and proofread the material during the later
stages of its production. Linda Gass designed and developed the
POSTSCRIPT Language Cookbook and she is the principal author
of both the examples and the explanatory text. The seminal idea
of the cookbook is due to Doug Brotz and several of the illustra-
tions in the cookbook are due to John Warnock. Andy Shore
proofread the text and POSTSCRIPT sample programs. The book
design was specified by Bob Ishi and was implemented by Andy
Shore and Brian Reid. The index was compiled by Steven
Sorensen.

The art of printing is rich in tradition, and the technology for
producing the printed page has evolved over centuries. We at
Adobe Systems are pleased to offer POSTSCRIPT as a tool for
printing in the electronic age. I believe that this tutorial material
will significantly enhance your ability to explore this exciting
technology and help you enjoy the process of discovering the
world of electronic printing.

Charles Geschke
August 1985

x

CHAPTER 1

INTRODUCTION

A
BA
CBA
CA B

D

CEA B
D

CEFA B
D

The POSTSCRIPT language is a programming language designed
to convey a description of virtually any desired page to a printer.
It possesses a wide range of graphic operators that may be com-
bined in any manner. It contains variables and allows the com-
bining of operators into more complex procedures and functions.

POSTSCRIPT page descriptions are programs to be run by an in-
terpreter. POSTSCRIPT programs are usually generated by appli-
cation programs running on other computers. However, many
POSTSCRIPT printers, including the Apple LaserWriter, have an
interactive state in which the user may program directly in
POSTSCRIPT (see section 12.1).

1.1 POSTSCRIPT AS A PAGE DESCRIPTION LANGUAGE

POSTSCRIPT has a large selection of graphics operators that al-
low it to precisely describe a desired page. These operators con-
trol the placement of three types of graphics objects:

• Text in a wide variety of typefaces can be placed on a page
in any position, orientation, and scale.

• Geometric figures can be constructed using POSTSCRIPT
graphics operators. These describe the locations of straight

1

lines and curves of any size, orientation, and width, as well
as filled spaces of any size, shape, and color.

• Sampled Images of digitized photographs, free-hand
sketches, or any other image may be placed on a page in
any scale or orientation.

All graphic objects may be easily rotated, scaled, and clipped to
a specified portion of the output page.

POSTSCRIPT Imaging Model

An imaging model is the set of rules that are incorporated into
the design of a graphics system. The POSTSCRIPT imaging model
is very similar to the model we instinctively adopt when we draw
by hand.

The POSTSCRIPT model considers an image to be built up by
placing ink on a page in selected areas. The ink may form letters,
lines, filled shapes, or halftone representations of photographs.
The ink itself may be black, white, colored, or any shade of gray.
These elements may be cropped to a boundary of any shape as
they are placed on the page. Once the page has been built up to
the desired form, it may be printed on an output device.

Three concepts are central to the implementation of the
POSTSCRIPT imaging model:

Current Page: The current page is the “ideal page” on which
POSTSCRIPT draws. It is independent of the capabilities of the
printer being used.

When a program begins, the current page is completely empty.
POSTSCRIPT painting operators place marks on the current page,
each of which completely obscures marks that they may overlay.
Once the current page is completely described, it is sent to the
printer, which reproduces the page as well as it can.

It is important to remember that no matter what color a mark
has — white, gray, black, or color — it is put onto the current
page as if it were applied with opaque paint.

Current Path: The current path is a set of connected and dis-

2 Chapter 1: INTRODUCTION

connected points, lines, and curves that together describe shapes
and their positions. There is no restriction to the shapes that may
be defined by the current path; they may be convex or concave,
even self-intersecting. The elements of the current path are
specified in terms of their positions on the current page. The
resolution of the printer in use in no way constrains the defini-
tion of the path.

The current path is not itself a mark on the current page.
POSTSCRIPT path operators define the current path, but do not
mark the page. Once a path has been defined, it can be stroked
onto the current page (resulting in a line drawn along the path),
filled (yielding solid regions of ink), or used as a clipping bound-
ary.

Clipping Path: The current clipping path is the boundary of
the area that may be drawn upon. Initially, the clipping path
matches the printer’s default paper size. The clipping path may
be changed to any size and shape desired. If an imaging operator
tries to mark the current page outside of the current clipping
path, only those parts of the mark that fall within the clipping
path will actually be drawn onto the current page.

Coordinate Systems

Positions on a page are described as x and y pairs in a coordinate
system imposed on the page.

Every output device has a built-in coordinate system by which it
addresses points on a page. We call this built-in coordinate sys-
tem, idiosyncratic to each device, device space. Device space
varies widely from printer to printer; there is no uniformity in the
placement of coordinate origins or in horizontal and vertical
scaling.

Positions on the POSTSCRIPT current page are described in terms
of a user coordinate system or user space. This coordinate sys-
tem is independent of the printer’s device space. Coordinates in a
POSTSCRIPT program are automatically transformed from user
space into the printer’s device space before printing the current
page. User space thus provides a coordinate system within which
a page may be described without regard for the particular
machine on which the page is to be printed.

1.1 POSTSCRIPT AS A PAGE DESCRIPTION LANGUAGE 3

The POSTSCRIPT user space can be altered in three ways. The
coordinate system’s origin may be translated, moved to any
point in user space. The axes may be rotated to any orientation.
The axes may be scaled to any degree desired; the scaling may
be different in the x and y directions. A sophisticated user may
specify any linear transformation from user space to device
space. Thus, coordinates in a POSTSCRIPT program are change-
able with respect to the current page, since they are described
from within a coordinate system that may slide around, turn,
shrink, or expand.

1.2 POSTSCRIPT AS A PROGRAMMING LANGUAGE

About one-third of the POSTSCRIPT language is devoted to
graphics. The remainder makes up an entirely general computer
programming language. The POSTSCRIPT language contains ele-
ments of many other programming languages, but most closely
resembles the FORTH language.

POSTSCRIPT Stack

POSTSCRIPT reserves a piece of memory called a stack for the
data with which it is working. The stack behaves like a stack of
books. The last book placed on the stack is the first book that
will later be removed. Similarly, numbers, strings, and other
pieces of data placed on the stack will be removed in reverse
order, the last item added to the stack being the first retrieved.

Postfix Notation

POSTSCRIPT operators that require numbers or other data, such
as add and sub, retrieve that data from the stack. To use an
operator, one must first place the data it requires, its operands,
on the stack, and then call the operator. The operator will place
its own results on the stack. This style of programming, in which
the operands are specified before the operator, is referred to as
postfix notation.

4 Chapter 1: INTRODUCTION

POSTSCRIPT Data Types

POSTSCRIPT supports many data types common to other lan-
guages, including reals, booleans, arrays, and strings. The
POSTSCRIPT language also defines object types such as
dictionary and mark. For descriptions of all the POSTSCRIPT data
and object types, refer to the POSTSCRIPT Language Reference
Manual.

POSTSCRIPT Flexibility

POSTSCRIPT is an extremely flexible language. Functions that do
not exist, but which would be useful for an application, can be
defined and then used like other POSTSCRIPT operators. Thus,
POSTSCRIPT is not a fixed tool within whose limits an appli-
cation must be written, but is an environment that can be
changed to match the task at hand. Pieces of one page descrip-
tion can be used to compose other, more complicated pages.
Such pieces can be used in their original form or translated,
rotated, and scaled to form a myriad of new composite pages.

Printable Programs

POSTSCRIPT programs are written entirely in printable ASCII

characters. This allows them to be handled as ordinary text files
by the vast majority of communication and computer file
systems. In addition, it ensures that a POSTSCRIPT program will
be as easy for a person to read as the structure of the program
allows.

1.2 POSTSCRIPT AS A PROGRAMMING LANGUAGE 5

CHAPTER 2

The POSTSCRIPT programming language, like all programming
languages, works with various types of data, such as numbers,
arrays, strings, and characters. The pieces of data manipulated by
POSTSCRIPT are referred to as POSTSCRIPT objects.

There are many ways a language can manipulate data; for ex-
ample, many languages require that data be placed in variables
and be addressed by a variable name. The POSTSCRIPT language
has variables, but it also manipulates data directly by using a
special entity called a stack.

2.1 THE POSTSCRIPT STACK

A stack is a piece of memory set aside for data which is to be
immediately used by POSTSCRIPT. This memory area is or-
ganized in such a way that the last item put in is the first item
available to be removed. This type of data structure is referred to
as a last in, first out or LIFO stack.

A LIFO stack behaves like a stack of books. As the books are
stacked up — Twain, then Dickens, then Hemingway, and so
on — only the book on the top, the last one added, is really acces-
sible.

7

Putting Numbers on the Stack

Any number appearing in a POSTSCRIPT source file (that is, a
text file that contains a POSTSCRIPT program) is placed on the
stack. For example, if a source file contains the following line:

12 6.3 −99

the interpreter will take the following actions as it reads the line12
12

6.3
12

6.3

-99
6.3
12

-99

POSTSCRIPT Stack

from left to right (see illustration at left):

1. Push the number 12 onto the stack

2. Place 6.3 on the stack, pushing 12 to the next position
down.

3. Put −99 onto the stack, pushing the first two numbers down
one place.

The number −99 is now at the top of the stack, waiting to be
used. The other numbers are on the stack also, but can only be

mark
/Font
[1 2]
(PS)

Anything can be placed
on the stack

taken off in the proper order. It should be borne in mind as we
use the stack that any kind of POSTSCRIPT object can be placed
on the stack. This includes arrays, strings, and the more exotic
POSTSCRIPT objects, like dictionaries. For the first chapter or
two of this tutorial, we shall concentrate primarily on numbers,
to simplify our discussion.

Note that spaces, tabs, and newline characters act as delimiters of
POSTSCRIPT objects. Other characters, such as parentheses and
brackets, can be delimiters under some circumstances; we shall
discuss these as we progress through the tutorial.

2.2 ARITHMETIC

A POSTSCRIPT operator is a word that causes the POSTSCRIPT

interpreter to carry out some action. It is the equivalent of the
commands and procedures of other languages. When the inter-
preter comes across a word in a source file, it searches its inter-
nal dictionaries to see if that word is an operator name. If the
name is listed in the dictionary, the interpreter carries out
whatever instructions are associated with that name and then
continues on to the next word in the source file. For more detail
on POSTSCRIPT dictionaries, refer to chapter four.

8 Chapter 2: STACK AND ARITHMETIC

add and sub

POSTSCRIPT operators look to the stack for the numbers they
need, that is, for their operands. The operator generally removes
its operands from the stack and replaces them with whatever
results that operator produces.

For example, the add operator causes POSTSCRIPT to remove the

5
5

27
5

27

32
add

add

top two numbers from the stack, add them, and leave the sum on
the stack. Thus, the program line below would affect the stack as
illustrated at left.

5 27 add

The 5 and the 27 are pushed onto the stack and the add operator
then replaces them with their sum.

8.3
8.3

6.6
8.3

6.6

1.7
sub

sub

The POSTSCRIPT sub operator works in a similar manner, with
the program line

8.3 6.6 sub

having the results diagrammed at left. The numbers 8.3 and 6.6
are pushed on the stack; the sub operator subtracts the top num-
ber on the stack from the number below it.

Stack Notation

The contents of the POSTSCRIPT stack is typically depicted in
print as a line of numbers (or other data) with the top of the stack
at right. Thus, a stack with 6 on top, 143.9 below it, and −800
below that is printed:

−800 143.9 6

Notice that this displays the numbers in the order in which they
were originally placed on the stack.

Similarly, the effects of an operator on the stack may be in-
dicated by showing the stack’s initial condition (before the
operator is executed), the operator’s name, and then the contents
of the stack after the operator was executed. Using this method, a
demonstration of the effects of add could be expressed:

2.2 ARITHMETIC 9

5 27 add ⇒ 32

.

Other Arithmetic Operators

Besides add and sub, POSTSCRIPT possesses a full range of
arithmetic operators, including:

div Divide the second number on the stack by the
top number on the stack. For example,

13 8 div ⇒ 1.625

idiv Divide the second number on the stack by the
top number on the stack; only the integral part of
the quotient is retained.

25 3 idiv ⇒ 8

mod Divide the second number by the top. In this
case, only the remainder of the division is kept.

12 10 mod ⇒ 2

The operands passed to the mod and idiv
operators must be integers.

mul Multiply the top two numbers on the stack,
pushing the product onto the stack.

6 8 mul ⇒ 48

neg Reverse the sign of the number on top of the
stack.

−27 neg ⇒ 27

These are the arithmetic operators we shall be using the most in
this tutorial. For detailed descriptions of the full range of
POSTSCRIPT arithmetic operators, including sqrt, exp, ceiling,
and sin, see the POSTSCRIPT Language Reference Manual.

10 Chapter 2: STACK AND ARITHMETIC

More-Complex Arithmetic

The use of a stack in POSTSCRIPT allows some freedom in ex-
actly how an arithmetic process is carried out. For example, let
us say that we wanted to calculate

6 + (3 ÷ 8)

in POSTSCRIPT. Either of the following two program lines would
leave the appropriate number on the stack.

• 3 8 div 6 add

• 6 3 8 div add

8
3

3 8

.375
div

6
.375

6

6.375
add

6+3/8, Example 1

In the first case (see illustration), we put 3 and 8 on the stack,
divide the former by the latter, put 6 on the stack, and add it to
the quotient below it.

In the second case, the same operations are performed, but now
we start out by putting all three of the numbers on the stack.

8
3
6

6 3 8

.375
6

div

6.375
add

6+3/8, Example 2

Then we call the div operator, which divides the second number
(3) by the top (8) and add the top two numbers (6 and .375).

Similarly, the equation

8 − (7 × 3)

can be expressed in at least two ways:

• 8 7 3 mul sub

• 7 3 mul 8 exch sub

The second method introduces a new operator: exch. This
operator exchanges the top two items on the stack. Note that in

21
7 3 mul

8
21

8

21
8

exch

-13
sub

8-7∗3

this example, the phrase 7 3 mul places the two numbers on the
stack and multiplies them, leaving the product, 21, on the top of
the stack. The number 8 is then pushed onto the stack, but this
leaves the stack contents in the wrong order for our subtraction.
The sub operator subtracts the top number from the second,
which in this case would be 21 minus 8, the opposite of what we

2.2 ARITHMETIC 11

want. The exch operator invoked at this point reverses the order
of the top two numbers of the stack, putting them in the correct
order for our subtraction.

Stack Operators

The exch operator is our first example of a stack operator, an
operator whose function is to add, remove, or rearrange items on
the POSTSCRIPT stack. There are several such operators, includ-
ing:

clear Removes all items from the stack.

6 8 12 clear ⇒ —

dup Duplicates the top item on the stack.

6 dup ⇒ 6 6

pop Remove the the top element from the stack.

17 8 pop ⇒ 17

roll Roll stack contents. Take two numbers from the
stack. The top number tells POSTSCRIPT how
many times and in which direction to rotate the
stack; the second number is how many items are
to be rotated.

7 8 9 3 1 roll ⇒ 9 7 8

7 8 9 3 −1 roll ⇒ 8 9 7

We will be using these and other stack manipulation operators
throughout this manual. For a complete description of all these
operators, see the appropriate chapter in the POSTSCRIPT Lan-
guage Reference Manual.

2.3 INTERACTIVE STACK OPERATORS

Most POSTSCRIPT programs are generated by application
programs such as word processors. However, many POSTSCRIPT

printers have an interactive mode that allows a user to speak

12 Chapter 2: STACK AND ARITHMETIC

directly to the POSTSCRIPT interpreter. For those who do have an
interactive environment, POSTSCRIPT has operators that allow
you to directly examine the stack.

==

15.3
-17
98

(a)

-17
98

(b)

The == operator removes the top item from the stack and echos
it over a communications channel (which is often connected to a
terminal). Thus, if the stack looked like figure a, at left, the ==
operator, typed on the keyboard, would print 15.3 on the ter-
minal and leave the stack holding the contents indicated in b.

The == operator prints the top item as well as it can. Many ob-
jects, such as numbers, strings, and arrays, are simply printed.
Items that cannot be printed, like dictionaries and files, are iden-
tified by their object types. Thus, if the top item on the stack was
a dictionary (we shall be talking about this at greater length
later), the == operator would print

––dictionary––

on the terminal.

pstack

Another useful interactive stack operator is pstack. This operator
prints the contents of the entire stack. Unlike the == operator,
pstack does not remove any of the stack’s contents.

Thus, if the stack looked like this:

6 12 −97.2 100

The pstack operator would display the following, leaving the
stack unchanged.

100
−97.2
12
6

pstack and == are examples of polymorphic operators, so called
because they can take many different kinds of objects as
operands.

2.3 INTERACTIVE STACK OPERATORS 13

2.4 NEW OPERATOR SUMMARIES

This chapter, and those that follow, end with a summary of the
POSTSCRIPT operators introduced in the chapter. These sum-
maries group the new operators by function type and list the fol-
lowing information for each:

• Operator name

• Stack contents before operation

• Stack contents after operation

• Description of operation

The two lists of stack contents are separated by a double arrow
(⇒). The symbols used in the stack descriptions represent the
following types of objects:

n i j x y Numbers

ary Array

bool Boolean

dict Dictionary

fdict Font dictionary

nam Name

ob Any POSTSCRIPT object

proc Procedure

str String

Other symbols, when used, are self-explanatory. When more
than one type of object may be expected on the stack, the alter-
native types will be separated by a slash (/). Thus, ary/str in-
dicates that the object may be either an array or a string.

14 Chapter 2: STACK AND ARITHMETIC

2.5 OPERATOR SUMMARY

Stack Operators

clear ob ...ob ⇒ —1 i
Remove all stack contents

dup ob ⇒ ob ob
Duplicate top of stack

exch ob ob ⇒ ob ob1 2 2 1
Reverse order of top two objects on stack

pop ob ob ⇒ ob1 2 1
Remove top of stack

roll ob ...ob n j ⇒ ob ...ob ob ...obn-1 0 (j-1) mod n 0 n-1 j mod n
Rotate n elements j times

Math Operators

add n n ⇒ n +n1 2 1 2
Add two numbers

div n n ⇒ n ÷n1 2 1 2
Divide two numbers

idiv n n ⇒ int(n ÷n)1 2 1 2
Integer divide

mod n n ⇒ (n MOD n)1 2 1 2
Modulus

mul n n ⇒ n ×n1 2 1 2
Multiply two numbers

sub n n ⇒ n −n1 2 1 2
Subtract two numbers

Interactive Operators

== ob ⇒ —
Destructively display top of stack

pstack ob ...ob ⇒ ob ...ob1 i 1 i
Display stack contents

2.5 OPERATOR SUMMARY 15

CHAPTER 3

BEGINNING GRAPHICS

The POSTSCRIPT language is designed to produce graphic
images. This being the case, the language comes with a wealth of
graphics operators, which we shall be exploring in this tutorial.

Drawing with POSTSCRIPT starts with constructing a path on an
ideal drawing surface called the current page. A path is a set of
straight lines and curves that define a region to be filled or
represent a trajectory that is to be drawn on the current page.
(For a more complete discussion of paths and the current page,
refer to the POSTSCRIPT Language Reference Manual.)

Having constructed a path, we need to decide what to do with it.
We can paint a line of some thickness along the current path or
we can fill the path in to create a solid shape.

We will alternate these two steps — creating a path and filling or
stroking it — until everything we want has been drawn onto the
current page. Once the current page is complete, we can print it
on a physical piece of paper.

17

3.1 DRAWING LINES

Let us begin with a simple task: drawing a single 5-inch-long
vertical line. The following program accomplishes this.

newpath
144 72 moveto
144 432 lineto

stroke
showpage

Let us examine this program line by line.

We start out by calling the newpath operator. This operator
empties the current path and declares we are starting a new path.

Now we shall construct a straight path that corresponds to the
line we wish to draw. Paths are constructed by moving a phan-
tom “pen” around the current page. This pen leaves an unmarked
trace on the current page that represents the current path. The
position on the current page to which this pen points at a par-
ticular time is the current point on the current path.

We start building a path with a moveto.

144 72 moveto

The moveto operator takes two numbers off the stack and treats
them as x and y coordinates to which to move. The coordinates
specified become the current point.

In the POSTSCRIPT default coordinate system, the origin is in the
lower left hand corner of the current page. As usual, x increases
to the right and y increases upward. The units employed in this
system are 1/72 inch long. Thus, our second program line places
two numbers (144 and 72) on the stack and then moves the cur-
rent point to a location 2 inches (144/72) to the right and 1 inch
(72/72) up from the lower-left corner of the page.

The lineto operator on the third line,

144 432 lineto

adds a segment to the current path that connects the current point

18 Chapter 3: BEGINNING GRAPHICS

to the position specified by the numbers on the stack, in this case
144 and 432. The point specified as the argument to this operator
becomes the new current point.

Note that the lineto operator does not actually draw on the cur-
rent page. It simply adds a line segment to the current path. You
may later draw in this line, but it does not happen automatically.

The stroke operator on line four causes the path we have con-
structed to be painted onto the current page. Our path becomes a
visible line.

Finally, showpage prints the current page, with the line we drew
on it.

The three steps we took in drawing our line were:

1. Construct a POSTSCRIPT path, using newpath, moveto, and
lineto.

2. stroke that path onto the current page.

3. Print the current page with showpage.

Two Lines

The following program, whose output is at left, draws two lines.

newpath
72 360 moveto
144 72 rlineto
144 432 moveto
0 −216 rlineto

stroke
showpage

This program is similar to our first. The first two lines clear the
current path and move the current point to a position 1 inch to
the right and 5 inches up from the page’s lower-left corner.

newpath
72 360 moveto

The next line contains a new operator, rlineto.

3.1 DRAWING LINES 19

144 72 rlineto

This is similar to the lineto operator we used in the first
program. Here, however, the numbers on the stack represent an x
and y displacement relative to the current point. POSTSCRIPT also
has an rmoveto operator that is similar to moveto, but measures
positions relative to the current point.

Thus, the program line above adds a line segment to the current
path. This segment extends two inches to the right of, and one
inch above, the current point.

The next two lines of the program,

144 432 moveto
0 −216 rlineto

move the current point up above the first line segment and then
add a line segment to our path extending down (note the negative
y argument) 216 units from that point.

At this stage we have a path consisting of two intersecting line
segments. These lines would be invisible if we were to print the
current page right now, since we have not yet used the stroke
operator. Note that the current path is not continuous. A
POSTSCRIPT path does not need to be a single connected piece; it
can consist of any collection of line segments and curves on the
current page.

Finally, our program strokes the path and prints the current page.

A Box

A Box

Here’s a simple one-inch-square box, centered on the page:

newpath
270 360 moveto
0 72 rlineto
72 0 rlineto
0 −72 rlineto
−72 0 rlineto
4 setlinewidth

stroke showpage

20 Chapter 3: BEGINNING GRAPHICS

This program moves to a position near the center of the page and
then constructs a box-shaped path by moving one inch up, right,
down, and left. The path is then stroked and the page printed.

The seventh line presents something new:

4 setlinewidth

The setlinewidth operator allows you to specify the width of the
line that is stroked onto your path. In this case, a line width of
4/72 inch is specified; this will remain the width of all lines
stroked onto the page until a new setlinewidth is invoked.

Our box, you may notice, contains a flaw: the lower-left corner
has a notch in it. This results from our lines’ having significant
width.4

units

(a)

(b)

A four-unit-wide line segment extends two units to either side of
the current path (illustration a, at left). Where the first and last
line segments of our box intersect, there is a two-unit-square area
that is not a part of either stroked path and remained white
(illustration b).

A Better Box

To avoid this problem, we must use a new operator: closepath.

newpath
270 360 moveto
0 72 rlineto
72 0 rlineto
0 −72 rlineto
closepath
4 setlinewidth

stroke showpage

This program is identical to the previous one, save that the
program line closing the box has been changed to closepath. The
closepath operator adds a line segment to the current path con-
necting the current point to the last point addressed by a moveto
operator. It closes the path with a mitered join, eliminating the
notch we noticed in our first box. It is possible to change the
method by which POSTSCRIPT joins line segments; to see how
this is done, refer to chapter 9 of this tutorial.

3.1 DRAWING LINES 21

3.2 FILLED SHAPES

Our programs so far have constructed paths and then stroked
them onto the page. However, a POSTSCRIPT path can also be
filled in. The following program is identical to the last except for

A Filled Box

one line.

newpath
270 360 moveto
0 72 rlineto
72 0 rlineto
0 −72 rlineto
closepath
fill

showpage

This time, instead of stroking this path, we invoked the fill
operator. This operator fills the current path with ink, producing
a solid black square.

A Gray Box

Our block does not have to be black. The program below
produces a gray box.

newpath
270 360 moveto
0 72 rlineto
72 0 rlineto
0 −72 rlineto
closepath
.5 setgray
fillA Gray Box

showpage

The setgray operator specifies the shade of gray in which all
painting is to be done. The argument on the stack (0.5, in this
case) specifies the shade, with zero being black and one being
white. The gray shade specified will remain in effect until
another setgray changes it. If a program does not specify a gray
value, POSTSCRIPT assumes everything is to be painted in black.

22 Chapter 3: BEGINNING GRAPHICS

Your printer may produce halftones that look different from
those printed in this tutorial. Each printer has its own method of
generating these.

Overlapping Shapes

POSTSCRIPT images are opaque. Any ink painted on the current
page will obscure anything previously painted there. Consider
this program, for example, which paints three overlapping solid
squares.

newpath %Begin black box
252 324 moveto
0 72 rlineto
72 0 rlineto
0 −72 rlineto
closepath
fill

newpath %Begin gray box
270 360 moveto
0 72 rlineto
72 0 rlineto
0 −72 rlineto
closepath
.4 setgray
fill

newpath %Begin lighter box
288 396 moveto
0 72 rlineto
72 0 rlineto
0 −72 rlineto
closepath
.8 setgray

Overlapping Boxes

fill
showpage %Send to printer

This example paints a black box, an overlapping gray box, and
an overlapping light gray box. Each box covers up part of the
box below it. If we had painted a white box, that would also have
covered up whatever it overlapped.

Note that each box had to start with a moveto. This is because

3.2 FILLED SHAPES 23

the fill operator clears the current path; after a fill, there is no
current point and a lineto or rlineto would have no starting
point. The stroke operator also clears the current path.

The three-box program also contains comments. Comments in
POSTSCRIPT programs start with a percent symbol and continue
to the end of the line. Anything following a % on a POSTSCRIPT

program line is ignored by the interpreter.

This last program was quite repetitious; we performed a set of
operations — drawing a filled box — three times. We shall see in
the next chapter that the POSTSCRIPT language allows you to
define a group of operations as a named procedure. This proce-
dure can then be used exactly as though it were a POSTSCRIPT

predefined operator.

24 Chapter 3: BEGINNING GRAPHICS

3.3 OPERATOR SUMMARY

Path Construction Operators

closepath — ⇒ —
Closes the current path with a straight line to the last moveto point

lineto x y ⇒ —
Continue the path with line to (x,y)

moveto x y ⇒ —
Set the current point to (x,y)

newpath — ⇒ —
Clear the current path

rlineto x y ⇒ —
Relative lineto (currentpoint + (x,y))

rmoveto x y ⇒ —
Relative moveto

Painting Operators

fill — ⇒ —
Fill current path with the current color

setgray n ⇒ —
Set the current color

setlinewidth n ⇒ —
Set the current line width

stroke — ⇒ —
Paint the current path with the current color and line width

Output Operators

showpage — ⇒ —
Transfer the current page to the output device

3.3 OPERATOR SUMMARY 25

CHAPTER 4

4.1 POSTSCRIPT DICTIONARIES

A dictionary is a table that associates pairs of objects. An
English dictionary associates words with their definitions. A
POSTSCRIPT dictionary associates an object called a key with
another object, the key’s value. The POSTSCRIPT interpreter can
look up a key in a dictionary and obtain the associated value (or
discover that the key is not present).

Two POSTSCRIPT dictionaries are always present, the system
dictionary and the user dictionary. The system dictionary pairs
each predefined POSTSCRIPT operator name with a particular
built-in action. The POSTSCRIPT user dictionary associates
names with the procedures and variables defined by a program.

When the interpreter encounters a name, it searches first the user
dictionary and then the system dictionary. If it finds the name
among the dictionaries’ keys, the interpreter takes the ap-
propriate action, usually either putting an object on the stack or
carrying out a set of instructions. If the name is not found in the
dictionaries, the interpreter raises an error.

POSTSCRIPT dictionaries are kept on a dictionary stack, which
starts out with the system dictionary on the bottom and the user
dictionary on top. When the interpreter encounters a name, it

27

searches the dictionaries downward from the top of this stack. A
program may create new dictionaries, which can be placed on
top of the dictionary stack. The dictionary on top of the diction-
ary stack, and thus the first to be searched, is called the current
dictionary. For details on creating new dictionaries, refer to the
POSTSCRIPT Language Reference Manual and the POSTSCRIPT

Language Cookbook.

4.2 DEFINING VARIABLES AND PROCEDURES

POSTSCRIPT Variables

A variable is defined by placing the variable’s name and value
into the current dictionary. This is done with the def operator, as
in the following program line:

/ppi 72 def

This line first places the name ppi onto the stack. The slash
preceding these characters indicates that the POSTSCRIPT inter-
preter should put this name on the stack as a literal and not im-
mediately try to find it in a dictionary.

Next, the number 72 is pushed onto the stack.

Finally, def takes these two objects off the stack and enters them
into the current dictionary. The second item on the stack (ppi)
becomes the key that is associated with the first item (72). That
is, ppi is now a POSTSCRIPT variable with a value of 72. If the
line

10 ppi mul

were to appear later in our program, the POSTSCRIPT interpreter

10
10

72
10

ppi

720
mul

Using a Variable

would do the following:

1. Push 10 on the stack,

2. Search the dictionary stack for the key ppi and put its value,
72, on the stack,

3. Multiply the top two stack items together, leaving their
product on the stack.

28 Chapter 4: PROCEDURES AND VARIABLES

To change the value of a variable, you redefine it with a new
value. The following lines would both change the value of ppi.

ppi
/ppi

100
ppi

ppi

1
100
ppi

1

101
ppi

add

Incrementing a Variable

/ppi 100 def

/ppi ppi 1 add def

The first line would redefine ppi to a value of 100; the second
would increment the value of ppi by one (see illustration at left).

POSTSCRIPT Procedures

A POSTSCRIPT procedure is a set of operations grouped together
with a common name. This set of operations is stored with its
key in a dictionary. When the key appears in a program, the as-
sociated set of operations is carried out.

POSTSCRIPT procedures are defined in exactly the same way as
variables. The program must place the procedure name (preceded
by a slash) on the stack, followed by the set of operations that
make up the procedure. Then the def operator is used to store the
operations and name in the current dictionary. The set of opera-
tions making up the procedure must be enclosed in braces.

For example, the following line defines a procedure named inch.

/inch {72 mul} def

Any appearances of the word inch following this line will cause
the interpreter to carry out the operations inside the braces. That
is, the interpreter will put 72 on the stack and then multiply the
top two numbers, the 72 and whatever was on the stack when
inch was called. Thus, the program lines

5 inch
5 72 mul

have identical results; both leave 360, the product of 5 and 72, on
the stack.

The inch procedure is a useful tool in many programs, since it
translates inches into the 1/72-inch units of the POSTSCRIPT co-
ordinate system.

4.2 DEFINING VARIABLES AND PROCEDURES 29

4.3 USING PROCEDURES AND VARIABLES

The use of procedures and variables can make an enormous dif-
ference in the readability of a program, the ease with which it
can be modified, and its length.

Three Boxes Again

As an example, let us take the last program from chapter two, the
three overlapping boxes, and rewrite it. Looking over the
program, we see that the set of instructions that construct a one-
inch-square path is repeated three times. Let us define these in-
structions to be a procedure named box and then incorporate this
procedure into the program.

% ----- Define box procedure ---
/box
{ 72 0 rlineto

0 72 rlineto
−72 0 rlineto

Overlapping Boxes

closepath } def
% --------- Begin Program -----------
newpath % First box
252 324 moveto box
0 setgray fill

newpath % Second box
270 360 moveto box
.4 setgray fill

newpath % Third box
288 396 moveto box
.8 setgray fill

showpage

Here we start by defining our new procedure, box, to be the set
of operators that create a square path. We then use that procedure
three times to make three filled boxes. First we move to a start-
ing point on the current page. Then we call the box procedure,
which contructs a path starting at that point. Finally, we set the
gray value and fill the path we contructed. These steps are
repeated two more times, once for each box in our image.

30 Chapter 4: PROCEDURES AND VARIABLES

Advantages

Changing our program has affected it in three important ways:

1. The program is more compact.

2. The program is more readable. Procedure names can (and
should) be chosen to reflect what they do. In reading the
program later, you can more easily see what the program is
doing at any given point, since the procedure titles them-
selves tell you.

3. The program is more easily changed. If, for example, we
wanted it to create two-inch boxes, we would only need to
change the definition of the box procedure. In the earlier
version of this program, we would have had to separately
change each of the three boxes.

Another Box Program

The way in which one designs a program will vary according to
what decisions have been made in defining procedures. Let us
look at one more way of producing our overlapping boxes.

% ------- Define procedures----
/inch {72 mul} def

/box % stack: x y => ---
{ newpath moveto
1 inch 0 rlineto
0 1 inch rlineto
−1 inch 0 rlineto
closepath } def

/fillbox % stack: grayvalue => ---
{ setgray fill } def
% ----------- Main Program -----------
3.5 inch 4.5 inch box
0 fillbox
3.75 inch 5 inch box
.4 fillbox
4 inch 5.5 inch box
.8 fillbox
showpage

We have made three changes here. First of all, we have included
our inch procedure, which converts the number on the stack from
inches into POSTSCRIPT units.

4.3 USING PROCEDURES AND VARIABLES 31

Second, we changed box so that it clears the current path
(newpath) and then moves to the location specified on the stack
before tracing out its path. Note that the comment to the right of
the procedure name indentifies what the procedure expects to
find on the stack.

Finally, we defined fillbox, which sets the current gray value to
the number on the stack, and then fills the current path.

This new version of our program divides into two sections. We
first defined a set of procedures and then used these procedures
in the main part of our program, the section that actually carries
out our assigned task. This main program section is much more
readable than our original three-box program. Units are ex-
pressed in inches and major activities are carried out by
procedures whose names indicate their functions.

Considerations in Defining Procedures

There are no solid rules that dictate when a set of operations
should be defined as a procedure. In general, the three qualities
you are trying to maximize are: readability, so that other people
(or yourself at a later date) can pick up the program and see what
it does; compactness, so that your program does not take up
more space than is necessary; flexibility, so that when changes
become necessary, they can be made with a minimum of pain.

To maximize these qualities, you should consider defining a set
of operations to be a procedure if it occurs frequently in the
program, particularly if it is likely to need revising, or if its pur-
pose is obscure to the casual reader and would benefit from a
descriptive name.

32 Chapter 4: PROCEDURES AND VARIABLES

4.4 OPERATOR SUMMARY

Dictionary Operators

def key value ⇒ —
Associate key with value in the current dictionary

4.4 OPERATOR SUMMARY 33

CHAPTER 5

PRINTING TEXT

A great deal of what we put on paper is text in various forms.
The POSTSCRIPT language has all the tools necessary to handle
text operations, from simple word placement to complex
typographic composition.

Text data is represented by POSTSCRIPT string objects. A
POSTSCRIPT string consists of any sequence of characters
enclosed in parentheses. A string can be placed on the stack,
assigned to a variable, or printed on paper.

POSTSCRIPT allows considerable freedom in how a string is
printed. Before a string can be sent to the current page,
POSTSCRIPT must be told what typeface and size to use in the
printing. That is, you must specify the font.

5.1 POSTSCRIPT FONTS

A font is a collection of characters with a unified design. The
design itself is referred to as a typeface. A set of typefaces
designed to work together in a pleasing way is called a typeface
family.

There are hundreds of typeface families, including such familiar
ones as Times and Helvetica.

35

The typefaces within each family represent variations on the
theme set by the family’s design. Thus, within the Times family,Roman

Italic
Bold
Extended
Condensed
Obliqued

we have Times Roman, Times Italic, Times Bold, and so on. The
variety of possible faces within a family is endless and includes
typefaces that are extended, condensed, extra-bold, and obliqued.

A font is a particular implementation of a typeface. The standard
POSTSCRIPT fonts are geometrical descriptions of the outlines of
a typeface’s characters. These descriptions allow the font to be
printed on paper at any scale with minimum distortion from the
scaling process.

Using POSTSCRIPT Fonts

Before you can print text, you must specify the desired font.
There are three steps to this process:

1. Find the information describing the font. This information
is kept in a font dictionary, which contains the information
necessary to produce a particular font, including the outline
description of each character. For more information on
font dictionaries, refer to chapter eight of this tutorial and
to the POSTSCRIPT Language Reference Manual.

2. Scale the font to the size needed. The size is specified by
the minimum vertical separation necessary between lines of
text. Thus, a twelve-point font needs twelve points be-
tween successive lines of text to ensure the lines do not
interfere with each other. (Remember that a point is 1/72
inch.)

3. Establish the scaled font as the current font, in which all
text is to be printed.

To see how this is done, let us examine the following program,
which prints the word typography in 15-point Times Roman.

/Times-Roman findfont
15 scalefonttypography
setfont
72 200 moveto
(typography) show
showpage

There are several new operators here.

36 Chapter 5: PRINTING TEXT

In the first line we put the literal name Times-Roman on the stack
and then call the findfont operator.

/Times-Roman findfont

findfont looks up the name in a dictionary called FontDirectory
and places the appropriate font dictionary on the stack.

The font dictionary returned by the findfont operator contains
character shape descriptions for one-point characters. These must
be changed to the desired font size with the scalefont operator.
This operator takes a font dictionary and a number from the
stack, and returns the font dictionary scaled by the specified
amount.

Thus, our program’s second line

15 scalefont

will leave on the stack a dictionary for a 15-point Times Roman
font.

Finally, the setfont operator takes the font dictionary off the
stack and establishes it as the current font, to be used for printing
text.

Now we are ready to print something.

We use the moveto operator to set the current point. Then we
place the string typography on the stack (enclosed in parentheses
to denote it as a string), and call the show operator.

72 200 moveto
(typography) show

show prints the string that is on the stack onto the current page
starting at the current point. The current point is left at the end of
the text.

5.1 POSTSCRIPT FONTS 37

5.2 PRINTING VARIETY

Point Sizes

The fact that POSTSCRIPT internally describes its fonts as shape
descriptions allows the fonts to be scaled while retaining their
fidelity at large sizes. For example, consider the following
program:

/showGorilla % stack: x y ---Gorilla

Gorilla

Gorilla

Gorilla

{ moveto (Gorilla) show }def
/Times-Roman findfont 6 scalefont setfont
72 300 showGorilla
/Times-Roman findfont 10 scalefont setfont
72 275 showGorilla
/Times-Roman findfont 15 scalefont setfont
72 250 showGorilla
/Times-Roman findfont 20 scalefont setfont
72 225 showGorilla

showpage

This program prints the word Gorilla in four different sizes of
Times Roman. We first define a procedure called showGorilla,
which moves to a position specified on the stack and then prints
the string.

/showGorilla % stack: x y ---
{ moveto (Gorilla) show }def

The procedure is followed by a set of lines that repeatedly finds,
scales, and sets a Times Roman font and then calls showGorilla.

/Times-Roman findfont 6 scalefont setfont
72 300 showGorilla

Note that this program could also be written with a procedure
defined to handle the font changes:

38 Chapter 5: PRINTING TEXT

/showGorilla % stack: x y
{ moveto (Gorilla) show }def

/scaleTimes % stack: scale
{ /Times-Roman findfont
exch scalefont %scale, using # on stk
setfont } def

6 scaleTimes
72 300 showGorilla
10 scaleTimes
72 275 showGorilla
15 scaleTimes
72 250 showGorilla
25 scaleTimes
72 225 showGorilla

showpage

The scaleTimes procedure defined above sets the current font to
Times Roman at a point size obtained from the stack. The first
line of the scaleTimes definition retrieves the font dictionary for
Times Roman.

/Times-Roman findfont

The stack now has this dictionary on top and the scale we want
below it. (We placed the font dictionary on the stack when we
called the procedure.) We exchange these two objects and call
the scalefont and setfont operators.

exch scalefont
setfont

The current font becomes Times Roman at the desired point size.

Typefaces

The following program demonstrates the POSTSCRIPT standard
typefaces.

5.2 PRINTING VARIETY 39

%-------- Define Procedures ------------
/vpos 720 def % vertical position variable
/word (Typefaces) def % string variable

/choosefont % Stack: typeface-name
{ findfont 15 scalefont setfont} def

/newline
{/vpos vpos 15 sub def %decrease vpos
72 vpos moveto } def %go to that line

/printword %stk: typeface-name
{ choosefont %set font
word show %show "typefaces"
newline } def %go to next line

%------------ Begin Program -----------------Typefaces
Typefaces
Typefaces
Typefaces

Typefaces
Typefaces
Typefaces
Typefaces

Typefaces
Typefaces
Typefaces
Typefaces

Τψπεφαχεσ

72 vpos moveto %vpos starts as 720
/Times-Roman printword
/Times-Bold printword
/Times-Italic printword
/Times-BoldItalic printword
newline
/Helvetica printword
/Helvetica-Bold printword
/Helvetica-Oblique printword
/Helvetica-BoldOblique printword
newline
/Courier printword
/Courier-Bold printword
/Courier-Oblique printword
/Courier-BoldOblique printword
newline
/Symbol printword
showpage

This program is more elaborate than our earlier ones. We start by
defining two variables and three procedures.

The variable vpos is used to keep track of the current point’s
vertical position. The program uses this variable as the y argu-
ment of a moveto.

Word holds the string that we want our program to print. It will
be used by a show operator.

40 Chapter 5: PRINTING TEXT

The choosefont procedure

/choosefont % Stack: typeface-name
{ findfont 15 scalefont setfont} def

sets the current font to that named on the stack. Newline moves
the current point down fifteen points by decreasing vpos and
using it with a moveto.

/newline
{/vpos vpos 15 sub def
72 vpos moveto } def

The printword procedure sets the current font, using choosefont,
prints the value of the variable word, and then moves the current
point to the beginning of the next line, using newline.

/printword %stk: typeface-name
{ choosefont
word show
newline } def

After defining its variables and procedures, the program moves
the current point to a starting position on the current page and
then uses printword with nine different typefaces.

/Times-Roman printword
/Times-Bold printword
/Times-Italic printword
/Times-BoldItalic printword
newline

Note that the typeface families are separated by calls to the
newline procedure.

Graphics and Text

POSTSCRIPT makes no distinction between text and graphics. A
text character is simply another graphic object to be placed on
the current page. Thus, no special steps need to be taken to com-
bine text and graphics on an output page.

Let us end this chapter with an example that illustrates this point.
We shall design and print a business card for the world-famous
Diamond Cafe.

5.2 PRINTING VARIETY 41

This will be a standard-size business card (two inches by three-
and-a-half) and will have a printed border 1/8 inch in from the
card’s edges. We shall print the name of the cafe in bold type at
the top left of the card with the cafe’s slogan (“The Club of
Lonely Hearts”) in italics below it. In the lower-right corner will
be the name of the cafe’s owner. Behind the text, we shall print a

Diamond Cafe
"The Club of Lonely Hearts"

Sam Spade

Owner

light gray diamond.

%---------------- Variables ------------------
/MainFont

/Helvetica-Bold findfont 15 scalefont def
/SloganFont

/Helvetica-Oblique findfont 7 scalefont def
/OwnerFont

/Helvetica findfont 10 scalefont def
%---------------- Procedures -------------------
/rightshow % stk: string
{ dup stringwidth pop %get length of string
120 exch sub %calc. white space
0 rmoveto %Move over that much
show } def %show string

42 Chapter 5: PRINTING TEXT

/CardOutline %Print card’s outline
{ newpath
90 90 moveto
0 144 rlineto
252 0 rlineto
0 −144 rlineto
closepath
.5 setlinewidth
stroke } def

/doBorder %Print card’s border
{ 99 99 moveto
0 126 rlineto %Border: 126 pts high
234 0 rlineto % & 234 points wide
0 −126 rlineto
closepath
2 setlinewidth %2-point-wide line
stroke } def

/Diamond
{ newpath %define & fill
207 216 moveto % a diamond-shaped
36 −54 rlineto % path

−36 −54 rlineto
−36 54 rlineto
closepath
.8 setgray fill } def

/doText %Print card’s text
{ 0 setgray 90 180 moveto
MainFont setfont
(Diamond Cafe) rightshow
90 168 moveto
SloganFont setfont
("The Club of Lonely Hearts") rightshow
216 126 moveto
OwnerFont setfont
(Sam Spade) show
216 111 moveto
(Owner) show } def

%---------- Main Program ------------
CardOutline
doBorder
Diamond
doText

showpage

5.2 PRINTING VARIETY 43

This program defines several variables and procedures and then
uses them to make the card. The steps taken in printing the card
are suggested by the procedure calls at the end of the program.
The card’s outline is drawn, followed by the border, the gray
diamond, and the text.

Any POSTSCRIPT object can be assigned to a variable. This
program uses three variables whose values are font dictionaries.
Each of these variables holds the information needed to
reproduce characters in a particular font. All the program needs
to do to change fonts is place the value of the desired variable on
the stack and call the setfont operator.

Let’s examine the definition of the MainFont. We first place the
name of the variable on the stack as a literal, preceded by a slash:

/MainFont

We then put the font dictionary for the Helvetica Bold typeface
on the stack

/Helvetica-Bold findfont

and scale it to a point size of fifteen.

15 scalefont

The scalefont operator leaves the newly-scaled font dictionary
on top of the stack with our variable name still residing beneath
it. The def operator places these two objects into the user dic-
tionary, with MainFont as the key and the font dictionary as that
key’s value.

/MainFont
/Helvetica-Bold findfont 15 scalefont def

The other two variables, SloganFont and OwnerFont are
similarly defined.

Assigning scaled font dictionaries to variables is a good practice
in programs that frequently change fonts. Finding and scaling a
font dictionary is a relatively time-consuming task. If a program
does this once for each font and saves the result as a variable, it
will run much more quickly than if it calls the findfont and
scalefont operators for each font change.

44 Chapter 5: PRINTING TEXT

Five procedures are defined in this program.

Rightshow prints a right-justified string (taken from the stack) in
a 120-point-wide space. The first line of this procedure’s defini-
tion

dup stringwidth pop

introduces a new operator: stringwidth.

stringwidth takes a string from the top of the stack and replaces
it with the horizontal and vertical distances the current point
would be moved if the string were shown in the current font. The
y offset is left on top of the stack, with x below it. Thus, the line
above duplicates the string on the stack, replaces the top copy of
the string with the x and y offsets, and then drops the y offset
from the stack. The stack is left with the string’s width on top of
the stack and the string itself below.

The procedures CardOutline, doBorder, and Diamond all define
closed paths. CardOutline and doBorder stroke their paths onto
the current page, while Diamond fills its path with gray.

Finally, doText prints the card’s lettering in a succession of
movetos, setfonts, and rightshows. Note that the different fonts
are set by calling one of the font-dictionary variables and then
setfont.

5.2 PRINTING VARIETY 45

5.3 OPERATOR SUMMARY

Character and Font Operators

findfont key ⇒ fdict
Return dictionary for named font

scalefont fdict n ⇒ fdict
Return new scaled font dictionary

setfont fdict ⇒ —
Set current font

show str ⇒ —
Print str on the current page

stringwidth str ⇒ x y
Return width of str

46 Chapter 5: PRINTING TEXT

CHAPTER 6

MORE GRAPHICS

6.1 COORDINATE SYSTEMS

POSTSCRIPT graphics operators do their work within a coordi-
nate system refered to as the user coordinate system or user
space. This system is independent of any physical device;
POSTSCRIPT operators draw in user space and the result is
automatically transferred to the device coordinate system of a
particular printer, that is, to device space.

In our programs so far, we have been using the POSTSCRIPT

default coordinate system. In this default user space, the origin is
in the lower-left-hand corner of the current page and the unit of
measure is the POSTSCRIPT unit of 1/72 inch.

User space is malleable, however. Its coordinate system may be
changed in position, orientation, and size.

Translating User Space

Translation

Translation is movement from one place to another. In the case
of a coordinate system, it refers to movement of the origin. The
POSTSCRIPT translate operator moves the origin of user space to
the position specified on the stack. For example, the program
line

47

100 200 translate

would move the origin of the POSTSCRIPT coordinate system to
the point (100,200). All future positions will be measured from
this point on the current page.

The following program illustrates the effects of translate.

/Times-Roman findfont 30 scalefont setfont

A Box

A Box

A Box

Translated Squares

/square %procedure to draw a
{ newpath % filled square

0 0 moveto
90 0 lineto %define a square path
90 90 lineto
0 90 lineto
closepath fill %fill it
6 92 moveto % & label it
(A Box) show } def

square %do a square
200 250 translate %move coord. sys.
square %do another square
200 250 translate %and move again
square %do a third square

showpage

The procedure defined in this program draws a block whose
lower left corner is at the origin of the current coordinate system.
We obtained three different blocks in this program, not by
changing the position of each box, but by translating the origin
of the coordinate system on the current page. Note that the
second translation was relative to the already-once-translated
origin, not the default origin.

Thus, there are two ways of drawing an object in several places.
You can change the position of the object each time, substituting
new coordinates where necessary, or you can construct the object
at the same coordinates and move the coordinate system.

48 Chapter 6: MORE GRAPHICS

Rotation

The POSTSCRIPT user coordinate system may also be rotated.

Rotation

The rotate operator takes a number from the stack and rotates
the coordinate axes that many degrees counterclockwise.

Let us again write a program that draws a box three times, trans-

A Box

A
 B

ox
A

 B
ox

Rotated Squares

lated as before, but this time also rotated.

/Times-Roman findfont 30 scalefont setfont

/square %procedure from
{ newpath % previous program
0 0 moveto
90 0 lineto
90 90 lineto
0 90 lineto
closepath fill
6 92 moveto %Label the box
(A Box) show } def

square %do a square
300 150 translate %move coord. sys.
60 rotate %and rotate it
square %do it again...
300 150 translate
60 rotate
square %do a third square

showpage

Again, we changed the position and orientation of the square by
changing the coordinate system within which that square is
defined. The actual definition of the square is unchanged.

Scaling

PS

1 1 scale

PS

1.25 1.25 scale

PS

2 .5 scale

The scale operator allows you to change the size of the units
used by POSTSCRIPT. This operator takes two arguments from
the stack, an x and y scaling factor, and changes the size of the
coordinate system’s units by those factors. For example,

6.1 COORDINATE SYSTEMS 49

3 3 scale

will triple the size of the coordinate system’s units; objects will
be drawn three times as large as they would have been before
this command was executed.

Again, our box program:

/Times-Roman findfont 30 scalefont setfont

A Box

A Box

A Box

Scaled Squares

/square %procedure to draw a
{ newpath % filled square

0 0 moveto
90 0 lineto
90 90 lineto
0 90 lineto
closepath fill
6 92 moveto %Label the box
(A Box) show } def

square %do a square
100 100 translate
1.5 1.5 scale
square
100 100 translate
.75 1.25 scale %non-uniform scaling
square

showpage

Notice that the second scaling was non-uniform; we scaled the x
and y dimensions by different factors, making our square (and its
label) appear narrow and tall.

6.2 GRAPHICS STATE

In our programs so far, we have been implicitly working within a
graphics state, the set of data that describes how POSTSCRIPT

operators will affect the current page. Among the information
that makes up the current graphics state are the current path,
point, gray value, font, line width, and user coordinate system.

For a complete description of the graphics state, refer to the
POSTSCRIPT Language Reference Manual.

50 Chapter 6: MORE GRAPHICS

Saving the Graphics State

There are times when we would like to save the current graphics
state so that we can return to it at a later time.

For example, if we want to print a filled and outlined shape, such

as the one at left, we would have to construct a suitable path and
then fill it. Unfortunately, the fill operator clears the current path,
leaving us with no path to stroke. It would be useful to save the
current graphics state immediately before performing the fill and
then restore the graphics state afterwards, recovering the path
which could then be stroked.

The operators that save and retrieve the current graphics state are
gsave and grestore. The gsave operator saves a copy of the cur-
rent graphics state on a graphics state stack. This stack can hold
up to thirty-two graphics states, including the current graphics
state.

The grestore operator restores the most recently gsaved graphics
state. All of the characteristics of the current graphics state, in-
cluding the current path, gray value, line width, and user coordi-
nate system, are returned to what they were when the gsave
operator was called.

Let us demonstrate the use of these operators with a program that
draws a five-pointed star, filled and outlined.

/starside
{ 72 0 lineto %add line to path
currentpoint translate %move origin
−144 rotate } def %rotate coord. sys.

/star %stack: x y

Star

{ moveto
currentpoint translate
4 {starside} repeat
closepath
gsave
.5 setgray fill

grestore
stroke } def

6.2 GRAPHICS STATE 51

200 200 star

showpage

We have defined two procedures in this program. Starside draws
one of the lines that make up the star; star draws a filled, out-
lined star whose upper left point has the x and y coordinates
specified on the stack.

72 0 lineto

currentpoint translate

The starside procedure starts out by adding a horizontal line to
the current path:

72 0 lineto

It then introduces a new operator, currentpoint, which pushes
the x and y coordinates of the current point on the stack. The
program line

currentpoint translate

thus puts the coordinates of the current point on the stack and
then moves the origin of user space to that position. The origin is
moved to the end of the line segment we just added to our path.

The starside procedure then rotates the current coordinate system
144 degrees clockwise.

−144 rotate

-144 rotate
(Note the negative argument; positive angles are measured
counterclockwise.) This rotation reorients the x-axis in the direc-
tion of the next side of the star.

The star procedure also introduces a new operator, repeat.

4 {starside} repeat

This operator requires two arguments: a number (4, in this case)
and a set of operations enclosed in curly braces (here consisting
of the procedure starside). The operations are carried out the
number of times specified by the first operand. The line above
will thus perform the starside procedure four times.

This line is followed by a closepath, which completes the star-
shaped path.

52 Chapter 6: MORE GRAPHICS

We then fill in the star:

4 {starside} repeat
closepath

fill

grestore

stroke

gsave
.5 setgray fill

grestore

Before we fill the star, we use the gsave operator to copy the
current state on the graphics state stack. This is necessary be-
cause we want to use the current path twice: once to fill and once
to stroke. Having saved the graphics state, we set the gray level
to .5 and fill the path. fill clears the current path. When we call
grestore, the graphics state we duplicated earlier is restored as
our current graphics state, returning the star-shaped path and a
gray value of 0.

The star procedure then strokes the resurrected current path.

The main part of our program is only two lines long:

200 200 star

showpage

This pushes 200 on the stack twice (as x and y coordinates) and
calls the star procedure, constructing a star beginning at that
point. The showpage operator then commits the contents of the
current page to paper.

6.3 CURVES

Generally, graphic images are not composed exclusively of
straight line segments. To accomodate this, there are
POSTSCRIPT operators to construct any desired curve. In this sec-
tion, we shall discuss curves that are circular arcs. More complex
curves may be defined using such operators as curveto (see the
POSTSCRIPT Language Reference Manual).

The arc operator adds a circular arc to the current path. It re-
quires five arguments on the stack: the x and y coordinates of the
arc’s center of curvature, the radius of curvature, and the arc’s
beginning and ending angles measured counterclockwise from
the positive x axis. Thus, the program line

6.3 CURVES 53

100 150 36 45 90 arc

would produce an arc-shaped path on the current page with a
center 100 units to the right and 150 units above the origin, a
radius of 36 units, extending counterclockwise from 45 to 90100 150 36 45 90 arc

degrees (see illustration at left).

The arcn operator is similar to arc, differing only in that it con-
structs an arc in a clockwise direction. The line

100 150 36 45 90 arcn

produces a path shaped like that at left.

The arc and arcn operators alter their behaviors slightly if a cur-100 150 36 45 90 arcn

rent point already exists when the operator is called. In this case,
the operator will draw not only the specified arc, but also a line
segment connecting the current point and the beginning of the
arc.

The following program illustrates this change by drawing similar
arcs, first without and then with a current point.

Two arcs

newpath
300 400 54 40 140 arc stroke

newpath
300 365 moveto
340 345 54 40 140 arc stroke

showpage

In the first case, no current point exists; the arc is simply drawn
onto the current page as specifed. Before drawing the second arc,
however, we moved the current point to the position 340,365;
this time, the arc operator drew a line connecting our current
point to the beginning of the arc.

54 Chapter 6: MORE GRAPHICS

Circles and Ellipses

A circle is an arc extending from 0 to 360 degrees. An ellipse
can be constructed by nonuniformly scaling the coordinate sys-
tem and then drawing a circle.

The program below draws a series of ellipses.

Ellipses

/doACircle
{ 0 0 54 0 360 arc stroke } def

/doAnEllipse
{ 1 .75 scale
doACircle
stroke } def

300 500 translate doACircle

4 {0 −72 translate
doAnEllipse} repeat

showpage

We begin by defining two procedures, doACircle, which draws a
circle 54 units in radius with its center at the origin, and
doAnEllipse, which draws an ellipse by scaling the y-dimension
to three-quarters the x and then drawing a circle.

6.3 CURVES 55

The program translates the origin to a position above the middle
of the page and draws a circle. Then the program does the fol-
lowing operations four times, using a repeat operator:

1. Move the coordinate origin down one inch (72 units).

2. Draw an ellipse onto the current page.

Note that although our loop specifies a one-inch distance be-
tween the ellipses’ centers, the ellipses are not drawn one inch
apart. This is because they are offset 72 points as measured in
the current coordinate system, whose y-direction is scaled down
by each ellipse.

Note also that although we only specify a scaling factor of .75,
the y axis becomes scaled much more than this during the
program. Each ellipse scales the current coordinate system,
which may already be scaled. Each ellipse reduces the vertical
direction to three-quarters of what it was before.

Rounding Corners

Intersecting lines are frequently connected by round corners. The
POSTSCRIPT arcto operator offers a convenient way to do this.

The operator requires two points and a radius on the stack. It
draws a line segment from the current point toward the first point
listed on the stack. This segment terminates in an arc with the
specified radius whose end is tangent to the line segment con-
necting the two points specified on the stack (see illustration at
left). The operator returns with the stack holding the x and y
coordinates of the beginning and end of the arc.

This becomes much clearer with an example. The following
program draws a small x at each of three points, moves to the
first of these, and then uses the other two points as arguments to

r

current
point

x1,y1

x2,y2

x1 y1 x2 y2 r arcto

arcto.

56 Chapter 6: MORE GRAPHICS

/DrawAnX
{ 3 3 rmoveto −6 −6 rlineto
0 6 rmoveto 6 −6 rlineto
stroke } def

arcto

50 50 moveto DrawAnX
50 150 moveto DrawAnX
150 150 moveto DrawAnX

50 50 moveto
50 150 150 150 36 arcto
4 {pop} repeat
stroke

showpage

The results of this program are shown at left. After drawing the
three X’s, the program moves the current point to 50,50, the
lower left point. The arcto operator then starts drawing a line
segment toward 50,150 (in the upper left). Instead of extending
up to the point, the line segment ends with an arc of radius 36
that terminates tangent to the line connecting the top two points
in the diagram. The current point is left at the end of the arc.

Note that the arcto operator leaves the stack holding the num-
bers 50, 114, 86, and 150, which represent the beginning and
endpoint of the arc. Since we do not need these values, we drop
them from the stack with a repeated pop operator.

4 {pop} repeat

Printing a Logo

Let us use our curve-generating operators to print a logo for a
movie named Omaha. This movie dwells on the loneliness of the
Plains during the early nineteenth century and so its logo will be
rather stark, consisting of a black background with the word
“Omaha” rising from below and a gray circle, representing the
full moon, behind.

6.3 CURVES 57

% ------------ Define Procedures -------------

OMAHA
/Helvetica-Bold findfont 27 scalefont setfont

/fourpops
{ 4 {pop} repeat } def

/background %Black background
{ 0 18 moveto % with rounded corners

0 72 108 72 18 arcto fourpops
108 72 108 0 18 arcto fourpops
108 0 0 0 18 arcto fourpops
0 0 0 72 18 arcto fourpops
fill } def

/moon
{ .6 setgray % set gray level
81 45 18 0 360 arc fill % draw a circle
} def % end of definition

/omaha
{ 1 setgray
0 −1 moveto
1 2 scale % double y-scale
(OMAHA) stringwidth pop % width of word
108 exch sub 2 div % calc. indentation
0 rmoveto % indent
(OMAHA) show } def % & print

% ------------ Begin Program -----------------
255 465 translate

background
moon
omaha

showpage

This program follows the usual pattern of defining a series of
procedures and then later calling them in sequence at the end of
the source code.

The first three procedures are reasonably straightforward.
Fourpops drops four objects from the stack; this is used after the
arcto operator to remove the coordinates left on the stack. The
background procedure uses four arcto’s to construct a rectan-

58 Chapter 6: MORE GRAPHICS

gular path with rounded corners and then fills the path. Moon
constructs a circular path and fills it with gray.

The omaha procedure prints that name in white capital letters
against the black background. Note that the line

1 2 scale

doubles the vertical scale of the coordinate system in use. This
makes our letters taller than they would be otherwise. The lines

(OMAHA) stringwidth pop
108 exch sub 2 div
0 rmoveto

calculate the indentation needed to center the string OMAHA on
the background. The first of these lines determines the printed
width of the string; the second and third lines subtract this width
from the total width of the background (108 units) and move half
that amount to the right.

6.3 CURVES 59

6.4 OPERATOR SUMMARY

Control Operators

repeat n proc ⇒ —
Execute proc n times

Coordinate Systems Operators

rotate angle ⇒ —
Rotate user space angle degrees counterclockwise about origin

scale x y ⇒ —
Scale user space by x horizontally and y vertically

translate x y ⇒ —
Move origin of user space to (x,y)

Graphics State Operators

grestore — ⇒ —
Restore graphics state from matching gsave

gsave — ⇒ —
Save current graphics state

Path Construction Operators

arc x y r ang ang ⇒ —1 2
Add counterclockwise arc to current path

arcn x y r ang ang ⇒ —1 2
Add clockwise arc to current path

arcto x y x y r ⇒ xt yt xt yt1 1 2 2 1 1 2 2
Build tangent arc

currentpoint — ⇒ x y
return coordinates of current point

60 Chapter 6: MORE GRAPHICS

CHAPTER 7

The POSTSCRIPT language has many operators for specifying the
flow of control within a program. We used one of these, the
repeat operator, in the previous chapter. All POSTSCRIPT control
operators make use of an object type which we briefly mentioned
before, the executable array, a more formal name for the object
we have been calling a procedure.

Executable Arrays

An executable array, that is, a POSTSCRIPT procedure, is an array
whose contents are to be executed by the POSTSCRIPT inter-
preter.

When the interpreter encounters a series of objects (values and
names) in a program, it carries out the actions appropriate to
those instructions, placing objects on the stack and looking up
and executing operators and procedures.

However, if a series of objects is enclosed in braces, it is not
immediately executed, but is stored in an array and placed on the
stack. Thus, the line

86 23 add

causes the interpreter to add the numbers 86 and 23 together,
while the line

61

{86 23 add}

places the numbers and the operator add in an array, which is
then placed on the stack. An executable array will often be
preceded by a literal name and followed by a def operator, which
associates it with the name in the current dictionary. (This is how
named procedures are defined.)

An executable array may also be used as an argument for a con-
trol operator, such as repeat. In this case, the executable array
holds the operations that are to take place when the conditions of
the control operator are met.

7.1 CONDITIONAL EXECUTION

Comparisons

The POSTSCRIPT language has a full set of comparison operators.
These compare the top two items on the stack, which can be of
any matching type, and return an object of type boolean, a true
or false, on the stack. The POSTSCRIPT comparison operators,
and their equivalent mathematical symbols, are:

• eq = • ne ≠

• gt > • lt <

• ge ≥ • le ≤

The boolean results of the above operators can be used with the
POSTSCRIPT logical operators not, and, or, and xor.

The if Operator

The if operator takes a boolean object and an executable array
from the stack and carries out the operations in the array if the
boolean value is true. Thus, we could define a procedure for a
text formatter that would check to see if the end of the current
line had been reached:

62 Chapter 7: LOOPS AND CONDITIONALS

/chkforendofline
{ currentpoint pop %get x-position
612 gt %greater than 612?
{0 −12 translate 0 0 moveto} if

} def

This procedure obtains the position of the current point and
throws away the y coordinate. It then compares the remaining x
coordinate to see if it is beyond the right edge of the current
page. If so, it carries out a set of operations that moves the coor-
dinate origin and current point to the beginning of the next line.

Let us write a program that will do very simple formatted print-
ing of a series of strings. This program contains a procedure that
takes a string off the stack, checks to see if that string will fit on
the current line, moves to a new line, if necessary, and then
prints the string.

% -------------- Variables ---------------
/LM 72 def %left margin
/RM 216 def %right margin
/ypos 720 def %current y-position
/lineheight 14 def %distance between lines

% of text
% ------------- Procedures ---------------
/newline %move to next line
{ ypos lineheight sub %decrease ypos
/ypos exch def %...& save new value
LM ypos moveto } def %move to next line

/prtstr %stack: str
{ dup stringwidth pop %calc. length of string
currentpoint pop %get horiz. position
add RM gt %sum > right margin?
{newline} if %if so, next line
show } def %print string

7.1 CONDITIONAL EXECUTION 63

%------------- Main Program --------------
/Times-Italic findfont 13 scalefont setfont

If you tell the truth, you
don’t have to remember
anything. - Mark Twain

LM ypos moveto
(If) prtstr (you) prtstr (tell) prtstr
(the) prtstr (truth,) prtstr (you) prtstr
(don’t) prtstr (have) prtstr (to) prtstr
(remember) prtstr (anything.) prtstr
(- Mark) prtstr (Twain) prtstr

showpage

Three variables are defined here. LM and RM are the left and
right margins, repectively, within which the text is to be printed.
Ypos is the vertical position of the current line on which text is
being printed. Lineheight is the vertical distance that will
separate lines of text.

The procedure newline moves the current point to the beginning
of the next line. It decreases ypos by lineheight, defining the
result to be the new value of ypos:

ypos lineheight sub
/ypos exch def

It then moves the current point to the left margin at the vertical
position determined by ypos.

LM ypos moveto

The second procedure defined in this program, prtstr, checks to
see if the string on the stack will fit on the current line, moves to
the next line, if appropriate, and prints the string.

The procedure first duplicates the string to be printed, and then
calculates its length by using stringwidth and dropping the y
value.

dup stringwidth pop

The procedure then determines the x position of the current
point.

currentpoint pop

64 Chapter 7: LOOPS AND CONDITIONALS

These two values are added and the sum is compared to the right
margin to see if the word would run beyond the margin.

add RM gt

If so, the newline procedure is called. In either case, the string,
still on the stack, is printed.

{newline} if
show

In the main part of the program, the current point is moved to its
beginning position and then the text is printed, one word at a
time.

This is a very primitive text formatter, unable to parse lines of
text into words. A more sophisticated formatter is presented in
the POSTSCRIPT Language Cookbook.

The ifelse Operator

The second POSTSCRIPT conditional operator requires three ob-
jects on the stack: a boolean value and two executable arrays.
The first array placed on the stack will be executed if the boolean
value is true; the second array will be executed if the boolean
object is false. That is, the program line

bool {op1} {op2} ifelse

will execute op1 if bool is true and op2 otherwise.

The program below uses the ifelse operator to produce a stack of
overlapping trapezoids of alternating gray shade and decreasing
height. The height is varied by changing the vertical scale for
each trapezoid as determined by the variable scalefactor. The
gray shade is alternated by counting the trapezoids as they are
constructed and filling even trapezoids with gray and odds with
black. The variable counter holds the number of the current
trapezoid.

7.1 CONDITIONAL EXECUTION 65

% ------- Variables & Procedures ---------
/scalefactor 1 def

/counter 0 def
/DecreaseScale
{ scalefactor .2 sub

/scalefactor exch def } def

/IncreaseCounter
{ /counter counter 1 add def } def

/trappath %construct a trapezoid
{ 0 0 moveto 90 0 rlineto

−20 45 rlineto −50 0 rlineto
closepath } def

/doATrap
{ gsave

1 scalefactor scale %scale vert. axis
trappath %construct path
counter 2 mod %is counter even?
0 eq {.5} {0} ifelse %choose grey or black
setgray fill

grestore } def %restore scale, etc.
% ------------ Begin Program ----------
250 350 translate

5
{IncreaseCounter
doATrap
DecreaseScale
0 20 translate } repeat

showpage

The procedures DecreaseScale and IncreaseCounter do what
their names imply, the former decreasing scale by .2, the latter
increasing counter by 1.

The trappath procedure constructs a trapezoidal path with its
lower left corner at the origin. Successive trapezoids are offset
by translating the coordinate system.

66 Chapter 7: LOOPS AND CONDITIONALS

Finally, the doATrap procedure scales the current coordinate sys-
tem, constructs a trapezoidal path (using trappath), and then cal-
culates counter modulo 2.

1 scalefactor scale
trappath
counter 2 mod

The modulo operation will yield a 0 if counter is even and a 1 if
counter is odd.

We then use the ifelse operator.

0 eq {.5} {0} ifelse
setgray fill

We test the results of the mod operation, place two executable
arrays (holding alternative values for setgray) on the stack, and
call the ifelse operator. The ifelse operator executes one of the
executable arrays, causing either a .5 or a 0 to be placed on the
stack, depending on whether the result of the eq operator was
true or false. DoATrap then calls the setgray operator and fills
the current path.

After defining the necessary procedures, the program translates
to a point below the center of the current page and implements a
repeat loop that repeatedly increases counter and prints a
trapezoid, and then prepares for the next trapezoid by decreasing
scale and translating the origin.

5
{IncreaseCounter
doATrap
DecreaseScale
0 20 translate } repeat

7.2 LOOPS

There are three POSTSCRIPT operators for establishing and con-
trolling program loops. We have already used the repeat
operator. The for operator controls an indexed loop similar to the
For...To...Next structures in other languages; the loop and exit
operators implement an indeterminate loop that continues until a
specified condition is met.

7.2 LOOPS 67

The for Operator

The POSTSCRIPT for operator implements a counting loop. This
operator takes four operands: the loop counter’s starting value,
increment amount, and final value, and the procedure to be
repeated. The for operator places the current value of the counter
on the stack immediately before each execution of the procedure.

For example, the following program line, embedded in the
proper program, would cause the letter “k” to be printed every
twelve units across the page:

0 12 600 {0 moveto (k) show } for

Each multiple of twelve from zero to 600 will be pushed onto the
stack and the set of operations run.

The numeric operands of for need not be integers. Consider the
following program:

/Times-Italic findfont 30 scalefont setfont

/printZip

Zip { 0 0 moveto (Zip) show} def
320 400 translate

.95 −.05 0 % start incr. end
{setgray printZip −1 .5 translate } for

1 setgray printZip

showpage

This program starts by establishing a 30-point Times Italic as the
current font. The procedure printZip is then defined and the
origin of the current coordinate system is moved to the middle of
the current page.

We then begin a for loop. The numbers .95, -.05, and 0 are
placed on the stack, followed by the executable array

{setgray printZip −1 .5 translate}

The for operator repeats these operations for each value of the
loop counter from .95 down to 0.

68 Chapter 7: LOOPS AND CONDITIONALS

After the loop terminates, the gray value is set to white and the
word Zip is printed one last time.

1 setgray printZip

loop and exit

Many procedures need to be repeated an indefinite number of
times, either forever or until some condition is met. Other lan-
guages meet this need with such constructs as Pascal’s
repeat...until. POSTSCRIPT provides a pair of operators: loop and
exit.

The loop operator takes a procedure as its operand and executes
it repeatedly until it encounters an exit command within the pro-
cedure. exit causes a program to leave the innermost loop con-
taining that operator. The exit operator will also terminate loops
started by the for, repeat, and forall operators. (See section 8.2
for a discussion of the forall operator.)

Thus, the program line

{(Howdy) show} loop

would cause the string Howdy to be repeatedly printed across the
page and beyond. Since there is no exit in the repeated instruc-
tions, this line represents an infinite loop.

To see how the loop-exit pair work together, let’s examine the
following program, which draws several strings of circles across
the width of the current page.

/pagewidth 8.5 72 mul def

/doCircle
{ xpos ypos radius 0 360 arc stroke} def
/increase-x
{ xpos radius add
/xpos exch def } def

7.2 LOOPS 69

/lineofcircles %stack: radius y
{ /ypos exch def %define ypos

/radius exch def % ...& radius
/xpos 0 def % ...& xpos
{xpos pagewidth le %begin loop
{doCircle increase-x}
{exit} ifelse

}loop %end loop
} def %end definition
% --------------- Begin Program -----------
10 400 lineofcircles
30 400 lineofcircles
90 400 lineofcircles

showpage

The variable pagewidth holds the width of a standard 8.5-inch
page in POSTSCRIPT units. The procedure doCircle draws a
circle on the current page; the circle’s center is at xpos,ypos and
its radius is radius. These variables are given values later in the
program.

The increase-x procedure increases the value of xpos by the
radius, in effect moving the center of the next circle over by that
amount.

The last procedure defined, lineofcircles, requires two numbers
on the stack: the circles’ radius and the vertical position of their
centers. These arguments are assigned to appropriate variables
(radius and ypos) and xpos is defined as 0.

/ypos exch def
/radius exch def
/xpos 0 def

Next, a loop repeatedly draws circles.

{xpos pagewidth le
{doCircle increase-x}{exit} ifelse

}loop

These lines check to see if the current horizontal position is less
than or equal to the width of the paper. If so, then the procedure
draws a circle onto the current page and increases xpos. If the

70 Chapter 7: LOOPS AND CONDITIONALS

horizontal position is off the right side of the page, that is, if the
result of the le procedure is false, the exit procedure causes the
interpreter to leave the loop.

Finally, the program does three lines of circles, all at the same

vertical position.

10 400 lineofcircles
30 400 lineofcircles
90 400 lineofcircles

Recursion

A loop can be set up in a program by having a procedure call
itself, a process called recursion. The recursive calling of a pro-
cedure can be a powerful — and somewhat tricky — tool. The
program must define some conditions under which the procedure
does not call itself.

Let us demonstrate recursion in a POSTSCRIPT program that
prints a table of factorials for the numbers from one to ten. The
factorial of a number is the product of all the integers from one
to that number. The recursive procedure here will be factorial,
which will define n-factorial to be 1 if n is one and
n×(n−1 factorial) otherwise.

% ---------- Variables & Procedures -----------

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800

/LM 72 def
/Times-Roman findfont 15 scalefont setfont
/nstr 7 string def

/newline
{ currentpoint 16 sub %decrement y-position
exch pop %drop old x...
LM exch % replace it with LM...
moveto} def % & go there

/factorial %stack: n --- n! (after)
{ dup 1 gt
{dup 1 sub factorial mul} if

} def
/prt-n % stack: n
{ nstr cvs show } def

7.2 LOOPS 71

/prtFactorial %stack: n
{ dup prt-n %print n

(! =) show
factorial prt-n %print n!
newline} def

% ----------- Program ---------------
LM 600 moveto
1 1 10 {prtFactorial} for
showpage

The third line in this program,

/nstr 7 string def

defines a string variable using the string operator. This operator
takes an integer from the stack and creates a new string with the
specified length. The string’s contents are null characters.

The newline procedure, as in our formatting program, moves the
current point to the beginning of the next line of text. Note that
this version of the procedure takes a somewhat different ap-
proach than the last, getting the current vertical position from the
currentpoint operator, rather than keeping this value in a vari-
able.

Factorial is the recursive procedure in this program.

/factorial
{ dup 1 gt

{dup 1 sub factorial mul} if
} def

The procedure duplicates the number on the stack and checks to
see if it is greater than 1. If so, the number is multiplied by the
result of calling factorial with its numeric predecessor. If the
number is not greater than one, then no action is taken, and the
function returns with that number (i.e., 1) on the stack. The result
is that factorial returns with the stack holding the factorial of the
specified number.

The third procedure, prt-n, prints the number on top of the stack.
It introduces a new operator, cvs.

72 Chapter 7: LOOPS AND CONDITIONALS

/prt-n % stack: n
{ nstr cvs show } def

The POSTSCRIPT show operator can only take a string as its ar-
gument. Anything that is to be printed must first be converted to
a string. This is the function of the cvs operator. This operator’s
arguments consist of an object and a string. The object is con-
verted into a string representation which is stored in the specified
string and left on the stack. For boolean objects, cvs will return
the strings true or false; names, operators, and numbers will
return their text representations.

The string argument given to cvs must have enough characters to
hold the string representation generated. Prt-n converts the num-
ber on the stack to a string whose maximum length is seven,
determined by the seven-character string it puts on the stack be-
fore calling cvs.

PrtFactorial prints the number on the stack and its factorial, then
moves to the next line.

/prtFactorial
{ dup prt-n
(! =) show
factorial prt-n
newline} def

The program then moves to the top of the current page and ex-
ecutes the prtFactorial procedure for each integer from one to
ten.

LM 600 moveto
1 1 10 {prtFactorial} for

Recursive Graphics

Recursion applied to graphics can yield quite impressive and in-
tricate results. We shall end this chapter with an example of
recursive graphics. Our program will produce a fractal, a figure
whose structure at any scale mirrors the figure’s overall struc-
ture.

In this case, we shall produce a fractal arrow.

7.2 LOOPS 73

% ------------ Variables & Procedures -------------
/depth 0 def

Fractal Arrow

/maxdepth 10 def
/down {/depth depth 1 add def} def
/up {/depth depth 1 sub def } def

/DoLine % print a vert. line
{ 0 144 rlineto currentpoint

stroke translate 0 0 moveto} def
/FractArrow
{ gsave .7 .7 scale %reduce scale
10 setlinewidth %set line width
down DoLine %print line
depth maxdepth le %depth<max. depth?
{ 135 rotate FractArrow
−270 rotate FractArrow} if

up grestore } def

% ------------ Begin Program ----------------
300 400 moveto
FractArrow
stroke
showpage

depth = 1

depth = 2

depth = 3

The two variables defined in this program control the recursion
of the procedure FractArrow. The variable depth holds a number
that represents the current “depth” of recursion. This variable is
incremented at the beginning of every FractArrow call and
decremented at the end.

The maxdepth variable holds the maximum value allowed for
depth. FractArrow will stop calling itself when depth is equal to
maxdepth.

The recursive procedure FractArrow starts by saving the
graphics state and then scaling down the coordinate system.

gsave
.7 .7 scale

The line width is set to ten, depth is increased, and a line seg-
ment is drawn onto the page.

74 Chapter 7: LOOPS AND CONDITIONALS

10 setlinewidth
down DoLine

Note that each successive recursion will yield shorter and thinner
line segments, since the scale is being decreased with each recur-
sion.

Depth and maxdepth are compared, and if the former is not

Fractal Arrow with the reduction
factor changed from .7 to .6

Fractal Arrow with constant
line width and reduction = 0.5

greater than the latter, the recursive part of the procedure is
carried out.

depth maxdepth le
{ 135 rotate FractArrow
−270 rotate FractArrow} if

The if operator’s argument calls FractArrow twice, once after a
counterclockwise rotation and again after a clockwise rotation.
These calls to FractArrow, in turn, repeat the process. Each
draws a vertical line — rotated to some other direction on the
current page — and then, if depth is still small enough, executes
FractArrow twice again. Each call to FractArrow generates two
more such calls until depth finally reaches maxdepth.

The FractArrow procedure ends by decreasing depth and restor-
ing the graphics state to what it had been at the beginning of the
procedure.

The image this program produces changes considerably with
changes in the maximum depth, the factor by which user’s space
is scaled, the length of the line segment drawn by FractArrow,
and the angles through which user’s space is rotated.

7.2 LOOPS 75

7.3 OPERATOR SUMMARY

Control Operators

exit — ⇒ —
Exit innermost for, loop, or repeat

for j k l proc ⇒ —
For i = j to l step k do proc

if bool proc ⇒ —
If bool is true, then do proc

ifelse bool proc proc ⇒ —t f
If bool is true then do proc , else do proct f

loop proc ⇒ —
Repeat proc forever

String and Conversion Operators

string n ⇒ str
Create string of length n

cvs ob str ⇒ str
Convert to string

Relational Operators

eq ob ob ⇒ bool1 2
Test for equality

ne ob ob ⇒ bool1 2
Test for inequality

gt n/str n/str ⇒ bool1 2
Test for greater than

ge n/str n/str ⇒ bool1 2
Test for greater than or equal to

lt n/str n/str ⇒ bool1 2
Test for less than

le n/str n/str ⇒ bool1 2
Test for less than or equal to

76 Chapter 7: LOOPS AND CONDITIONALS

CHAPTER 8

ARRAYS

8.1 POSTSCRIPT ARRAYS

POSTSCRIPT arrays are one-dimensional collections of objects.
These objects are numbered from zero, so that a ten-item array is
numbered from zero to nine. POSTSCRIPT arrays are different
from those in other languages in that their elements need not all
be of the same type. That is, a single array may contain, for
example, strings, integers, dictionaries, and other arrays.

An array in a program is denoted by any collection of
POSTSCRIPT objects surrounded by square brackets. Thus, the
lines

[16 (twelve) 8]
[(sum) 6 14 add]

both set up arrays. The first has three members: two numbers and
a string. The second array has two items in it: the string sum and
the number 20. (Note that operators within an array definition
are carried out as the array is being defined.)

Arrays may also be defined by the array operator. This operator
takes a number from the stack and constructs an array of that
length. The line

10 array

77

would leave a ten-place array on the stack. The elements of this
array are initially all POSTSCRIPT null objects.

Marks

When an array is created with a line such as

[1 2 3 (O’Leary)]

the square brackets play a more active role than is immediately
evident. The left bracket is a POSTSCRIPT operator that leaves an
object called a mark on the stack.

As the interpreter continues through the program line, it puts
more objects on the stack until it encounters a right bracket,
which is an operator that creates an array containing the stack
contents back to the topmost mark. The mark is dropped from
the stack and the array remains.

Composite Objects

POSTSCRIPT arrays, strings, and dictionaries are examples of
composite objects. These objects have values that are separate
from the object itself. That is, the character codes making up a
string are stored in a different location in a POSTSCRIPT machine
than the string object that POSTSCRIPT directly manipulates.

Note that composite objects can share values. A dup operation
on a string duplicates the object, but not its value. The duplicate
object looks to the same place in the machine’s memory for its
value.

8.2 ARRAY OPERATORS

Storing & Fetching Array Members: put and get

The put and get operators store and fetch array information. put
takes three arguments from the stack: an array, an index, and an
object. It puts the object into the array at the position specified
by the index. That is,

78 Chapter 8: ARRAYS

/AnArray 10 array def
AnArray 8 (language) put]

would put the string language into the ninth position in AnArray.
(Remember that the positions within an array are counted from
zero.)

get takes an array and an index from the stack and returns the
object occupying the specified position within the array. The line

[2 5 9] 1 get

would return with the number 5 on the stack.

The following program defines a procedure that uses get to print
the contents of an array. It also introduces a new operator,
length, which returns the number of objects in an array.

% ------------ Variables & Procedures ----------
/LM 72 def %Left margin
/Tempstr 30 string def

/Helvetica findfont 12 scalefont setfont

/crlf %next line
{ currentpoint 13 sub
exch pop LM exch moveto } def

/aryshow % stack: array
{ /ary exch def %put array in var.
0 1 ary length 1 sub %loop parameters
{ ary exch get %get array member
Tempstr cvs %convert to string
show crlf } for %print & next line

} def

8.2 ARRAY OPERATORS 79

% ------------ Begin Program --------------

mouse
27
aName
--nostringval--
--nostringval--
0
--nostringval--

LM 600 moveto

%begin array:
[(mouse) %string
27 %number
/aName %literal
[6 12] %array
{crlf} %executable
LM %variable
/Helvetica findfont %font dictionary
]
aryshow

showpage

This program defines a variable, LM, sets the current font to
twelve-point Helvetica, and defines the crlf procedure that we
have seen before. It then defines a procedure that prints an
array’s contents.

/aryshow % array => ---
{ /ary exch def

0 1 ary length 1 sub
{ ary exch get
Tempstr cvs
show crlf } for

} def

This procedure takes an array from the stack and places it into a
variable, ary. It then starts a for loop that will count from zero to
one less than the number of items in ary. (Again, an array with n
items will number those items from 0 to n-1.)

The for procedure uses the counter, automatically pushed onto
the stack, as an index to fetch an item from ary.

ary exch get

The object obtained is converted to a string representation of up
to thirty characters (determined by the initial definition of
Tempstr) and printed on the current page.

80 Chapter 8: ARRAYS

Tempstr cvs
show crlf

After defining aryshow, the program moves to the top of the
page and places a seven item array on the stack.

mouse
27
aName
--nostringval--
--nostringval--
0
--nostringval--

LM 600 moveto

%Begin array:
[(mouse)
27
/aName
[6 12]
{crlf}
LM
/Helvetica findfont]

This array becomes the argument for the aryshow procedure.

Note the manner in which the different objects are printed. The
string, name, number, and variable have their values printed as
you would expect. The array, procedure, and font dictionary are
represented by the string --nostringval--, because cvs is unable to
produce a string representation for these objects.

“Automatic” Loops: forall

Programs often need to perform a set of operations on each
member of an array. To simplify this procedure, POSTSCRIPT

defines a forall operator that takes an array and a procedure as
operands. The procedure is performed on each member of the
array. Thus,

AnArray {30 string cvs show} forall

would print each member of AnArray on the current page.

We can use the forall operator to simplify the text formatter we
wrote in the previous chapter.

8.2 ARRAY OPERATORS 81

% -------------- Variables ---------------
/LM 72 def %right margin
/RM 216 def %left margin
/ypos 720 def %current y-position
/lineheight 11 def %distance between lines

% of text
% ------------- Procedures ---------------
/crlf %move to next lineConcience is the inner voice that

warns us somebody may be looking
 - Mencken { ypos lineheight sub %decrease ypos

/ypos exch def % ...& save new value
LM ypos moveto } def %move to next line

/prtstr %stack: str
{ dup stringwidth pop %calc. length of string
currentpoint pop %get hor. position
add RM gt % sum > right margin?
{crlf} if %if so, carriage return
show } def %print string

/format %stack: [string array]
{ {prtstr () show} forall
} def
%------------- Main Program --------------
/Times-Italic findfont 10 scalefont setfont

LM ypos moveto

%Text array:
[(Concience)(is)(the)(inner)(voice)
(that)(warns)(us)(somebody)(may)(be)
(looking)(- Mencken)]
format

showpage

Most of this program is identical to the formatter in the previous
chapter. The difference is in the inclusion of the format proce-
dure, which takes an array of strings from the stack and uses
each member as an argument for prtstr.

/format
{ {prtstr () show} forall
} def

Notice that format prints a space after each string.

82 Chapter 8: ARRAYS

Our text can now be placed in an array of one-word strings and
printed with the format procedure, which is exactly what the
program does.

Polymorphic Operators

The length, put, get, and forall operators are actually
polymorphic operators. These can operate on arrays, strings, or
dictionaries. length will return the number of characters in a
string, elements in an array, or key-value pairs in a dictionary.
The other three operators give you access to individual charac-
ters, array elements, or key-value pairs. For more information on
the use of these operators, refer to the next chapter of this
Tutorial, the POSTSCRIPT Language Reference Manual, and the
POSTSCRIPT Language Cookbook.

All At Once: aload and astore

Two POSTSCRIPT operators allow you to store or load the entire
contents of an array at once. The aload operator takes an array as
its argument and places the individual elements of that array, and
then the array itself, on the stack. Thus, the line

[1 2 3] aload

would result in the following stack contents:

1 2 3 [1 2 3]

astore works in the opposite direction, taking several objects and
an array off the stack, and placing all of the objects into the
array, which is left on the stack. There must be at least as many
objects on the stack as there are places within the array or an
error will result. The line

(a) (b) (c) (d) 4 array astore

would leave the array

[(a) (b) (c) (d)]

on the stack.

The following program uses aload to print a sample of some of
the standard POSTSCRIPT typefaces.

8.2 ARRAY OPERATORS 83

% --------- Variables & procedures -------
/LM 72 def

/newline
{ currentpoint 10 sub

exch pop LM exch
moveto } def

The five boxing wizards jump quickly.
The five boxing wizards jump quickly.
Τηε φιϖε βοξινγ ωιζαρδσ ϕυµπ θυιχκλψ.

/PrintSample % [string fontname]
{ aload pop %unload array

findfont 8 scalefont setfont %set font
show newline } def %print string

/FontList [%begin array:
[(The five boxing wizards jump quickly.)

/Helvetica]
[(The five boxing wizards jump quickly.)

/Times-Roman]
[(The five boxing wizards jump quickly.)

/Symbol]
] def %end array
% ------------ Begin Program ----------
LM 600 moveto

FontList {PrintSample} forall

showpage

LM and newline are familiar to us from past programs.

The PrintSample procedure takes an array as its argument; this
array should hold a string and the literal name of a font.

/PrintSample% [string fontname]
{ aload pop

findfont 8 scalefont setfont
show newline } def

The procedure uses an aload to unload the contents of the array
onto the stack and a pop to remove the copy of the array itself
left on the stack by aload. PrintSample sets the current font to
the font named in the array and then prints the string on the cur-
rent page.

FontList is an array made up of two-item arrays of the form
needed by PrintSample. Each of these smaller arrays is made up
of a string and the name of a font, for example

84 Chapter 8: ARRAYS

[(The five boxing wizards jump quickly.)
/Helvetica]

Finally, the program moves the current point to the top of the
page, puts the FontList array onto the stack and calls
PrintSample for each item within the array.

FontList {PrintSample} forall

Note that the Symbol font prints Greek symbols in the place of
English letters.

8.2 ARRAY OPERATORS 85

8.3 OPERATOR SUMMARY

Array Operators

[— ⇒ mark
Start array construction

] mark ob …ob ⇒ array0 i
End array construction

aload ary ⇒ ob …ob ary0 n−1
Get all elements of an array

array n ⇒ ary
Create array of size n

astore ob …ob ary ⇒ ary0 n−1
Put elements from stack into array

Polymorphic Operators

forall ary/dict/str proc ⇒ —
For each element do proc

get ary/dict/str index/key ⇒ value
Get value of index/key in object

length dict/str/ary ⇒ n
Length of object

put ary/dict/str index/key value ⇒ —
Put value into object at index/key

Stack Operators

mark — ⇒ mark
Push mark onto stack (same as [)

86 Chapter 8: ARRAYS

CHAPTER 9

MORE FONTS

9.1 DIFFERENT SHOWS

Printing a document usually requires more than printing the
words that make up the text. The text often must be justified
between page margins and the spacing between individual
characters may need to be adjusted. To help with these tasks, the
POSTSCRIPT language has four variations of the show operator
that allow text to be adjusted for esthetic appeal. These operators
are:

• ashow
Print a string, adding a specified amount of space after each
character.

• widthshow
Print a string, adding space after each occurrence of a
specified character (e.g., after each space).

• awidthshow
Combine the above, adding space after each character and
adding a separately specified offset after each occurrence of
a particular character.

• kshow
Execute a specified procedure between each pair of charac-
ters in the string. The current character and the character
following are passed as arguments to the procedures.

87

For details on these operators, refer to the POSTSCRIPT Language
Reference Manual.

We shall look more closely at the fourth operator, kshow. This
operator takes a procedure and a string off the stack. After each
character in the string is printed, that character and the one that
follows it are placed on the stack, and the procedure is executed.
This happens for each character within the string except the last.
The final character is simply printed. Thus, the line

{pop pop (-) show} (hyphens) kshow

would drop two items from the stack and print a hyphen between
each pair of letters in the word hyphens.

h-y-p-h-e-n-s

Note that in this case we popped the pair of characters left by
kshow off the stack, since our procedure does not use them.

kshow was specifically designed to allow easy kerning, adjust-
ing inter-letter spacing to achieve a more pleasing appearance.
However, this operator may be used for other purposes, since the
procedure handed to it as an operand may perform any operation.

For example, the program below repeatedly prints the words
Binky Inc. until the entire current page is filled. The procedure
passed to kshow calls the newline procedure whenever the cur-
rent point moves past the right margin. Once the page is filled,
Binky Inc. is printed again in the center of the page in thirty-
point type.

88 Chapter 9: MORE FONTS

Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky In
c. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky
 Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Bin
ky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. B
inky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc.
 Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky I
nc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Bink
y Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. B
inky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc.
 Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky Inc. Binky I
nc

Binky Inc.

% ------- Variables and Procedures --------
/TM 780 def %Top Margin
/BM −12 def %Bottom
/LM 0 def %Left
/RM 612 def %Right
/newline
{ currentpoint 13 sub
exch pop LM
exch moveto } def

/nlIfNec
{ currentpoint pop RM gt %beyond RM?
{newline} if } def %yes: next line

/done? %stack: --- bool.
{ currentpoint exch pop %Below BM?
BM lt } def

/fillpage % stack: str
{ /strg exch def
{ {pop pop nlIfNec} strg kshow

done? {exit} if
} loop

} def

9.1 DIFFERENT SHOWS 89

% ------------ Begin Program -----------
/Times-Bold findfont 10 scalefont setfont
LM TM moveto
.5 setgray
(Binky Inc.) fillpage

/Times-Roman findfont 30 scalefont setfont

RM LM sub %center the words
(Binky Inc.) stringwidth pop sub
2 div
400 moveto

0 setgray
(Binky Inc.) show

showpage

The program begins, as usual, by defining several variables and
procedures. The variables define the positions of the margins
within which the text is to be printed, in this case the edges of
the current page.

The procedure nlIfnec calls newline if the current point is beyond
the right margin. Done? returns a boolean true or false, depend-
ing on whether the current point is below or above the bottom
margin.

The fillpage procedure

/fillpage
{ /strg exch def

{ {pop pop nlIfNec} strg kshow
done? {exit} if

} loop
} def

takes a string off the stack and places it in a variable strg. It then
starts a loop which places a procedure and strg on the stack and
executes the kshow operator. The procedure executed between
characters pops the two character codes left by kshow off the
stack (since we do not use them here) and then calls the nlIfNec
procedure. Once the string has been printed, the done? procedure
determines whether the current point is off the bottom of the

90 Chapter 9: MORE FONTS

page. If so, fillpage quits; otherwise, it repeats, printing strg
again.

The main part of the program sets the current font to a ten-point
Times Bold, moves to the top left of the current page, sets the
gray value to .5, and fills the page with the words Binky Inc.

/Times-Bold findfont 10 scalefont setfont

LM TM moveto
.5 setgray
(Binky Inc.) fillpage

It then prints the thirty-point Binky Inc.

RM LM sub %center the words
(Binky Inc.) stringwidth pop sub
2 div 0
400 moveto

0 setgray
(Binky Inc.) show

9.2 CHARACTER ENCODING

Computer systems handle text by assigning a numeric code to
each character recognized by the system. This set of codes is
referred to as an encoding of the character set. One widespread
encoding is the familiar ASCII character code.

Each POSTSCRIPT font dictionary contains the encoding for its
characters. Each character in the font is associated with an in-
teger from 0 to 255. The standard encoding for the alphanumeric
fonts, such as Times and Helvetica, is similar to the ASCII stan-
dard. It is important to note that a font’s encoding is not fixed
and may be changed to anything convenient for an application
program. For details on how to change the encoding of a font,
see the POSTSCRIPT Language Cookbook.

Many of the characters within a POSTSCRIPT font have no cor-
responding key on a computer keyboard and can only be referred
to by their codes. Many fonts also have characters which do not
have codes in the standard encoding and must be assigned a code

9.2 CHARACTER ENCODING 91

before they can be used (see POSTSCRIPT Language Cookbook).
For a complete list of the characters and corresponding codes
available in the standard POSTSCRIPT fonts, refer to the
POSTSCRIPT Language Reference Manual.

Character codes may be directly used in two ways: they may be
inserted into a string with a put operation or used directly in a
string as an octal (base eight) number.

Putting Codes Into Strings

The following program uses put to generate a table of the
characters whose standard codes are greater than 160. Note that
some of the codes listed have no characters associated with
them.

% -------- Variables & Procedures ---------
/Times-Roman findfont 10 scalefont setfont

161 ¡
162 ¢
163 £
164 ⁄
165 ¥
166 ƒ
167 §
168 ¤
169 '
170 “
171 «
172 ‹
173 ›
174 fi
175 fl
176
177 –
178 †
179 ‡
180 ·
181
182 ¶
183 •
184 ‚
185 „
186 ”
187 »
188 …
189 ‰
190
191 ¿
192
193 `
194 ´
195 ˆ
196 ˜
197 ¯
198 ˘
199 ˙
200 ¨
201
202 ˚
203 ¸
204
205 ˝
206 ˛
207 ˇ
208 —

225 Æ
226
227 ª
228
229
230
231
232 Ł
233 Ø
234 Œ
235 º
236
237
238
239
240
241 æ
242
243
244
245 ı
246
247
248 ł
249 ø
250 œ
251 ß

/char 1 string def
/nstr 3 string def

/newline
{ currentpoint 11 sub
exch pop LM
exch moveto } def

(/prt-n %stack: code
{nstr cvs show} def

/prtchar %stack: code
{ char 0
3 −1 roll put
char show } def

/PrintCodeandChar %stack: code
{ dup prt-n
() show
prtchar newline } def

% ---------- Begin Program ----------
/LM 72 def
LM 600 moveto
161 1 208 {PrintCodeandChar} for

92 Chapter 9: MORE FONTS

/LM 144 def
LM 600 moveto
225 1 251 {PrintCodeandChar} for

showpage

The prt-n procedure defined above takes a number from the
stack and prints it on the current page.

Prtchar takes a numeric code from the stack and prints the cor-
respoding character. The procedure does this by putting the num-
ber into a one-character string and then printing the string. The
first line

char 0

places the string and the index for the put on the stack. (Note
that the only position in a one-character string is zero.) The next
line

3 −1 roll put

brings the numeric code to the top of the stack and puts it into
char. Finally, the procedure prints char, which now contains our
character code.

The procedure PrintCodeandChar calls prt-n, prints three
spaces, and then calls prtchar, thereby printing one line of our
table.

/PrintCodeandChar %stack: code
{ dup prt-n
() show
prtchar newline } def

The program itself sets LM, our left margin, to 72, moves to the
top of the page, and then calls PrintCodeandChar for each num-
ber between 161 and 208. It then resets the left margin to 144
and prints table entries for the numbers from 225 to 251. The
codes from 209 through 224 are skipped because they have no
characters assigned to them in the standard encoding.

9.2 CHARACTER ENCODING 93

Octal Character Codes

The characters printed by the preceding program are not acces-
sible from the keyboard. They can be printed by inserting them
into strings, as we did above, or by using their octal values
directly in a string. A three-digit number following a backslash
in a POSTSCRIPT string is interpreted as the octal code of a char-
acter to be placed in the string. That is, the string

(785\275)

has as its fourth element the character whose character code is
275 octal. It would be printed as “785‰”. A list of the octal
encoding of all POSTSCRIPT standard fonts is in the POSTSCRIPT

Language Reference Manual.

To demonstrate this method of using octal codes, the following
program prints a line of Spanish text.

 ¡Hola, Isabel!

/Times-Roman findfont 12 scalefont setfont
300 400 moveto

(\241Hola, Isabel!) show
showpage

The code 241 in the string (\241Hola, Isabel!) represents an in-
verted exclamation point.

It should again be emphasized that the encoding used here is
merely the standard encoding for POSTSCRIPT text fonts and is in
no way fixed. If a different set of codes is appropriate to an ap-
plication, or if a program needs to use some of a font’s un-
assigned characters (which include a host of accented
characters), the encoding is easily changed. Again, to see how to
do this, refer to the POSTSCRIPT Language Cookbook.

9.3 FONT TRANSFORMATIONS

A POSTSCRIPT transformation matrix is a six-element array of
numbers that defines how coordinates in user space are to be
transformed into positions on the current page. The elements of
the array determine the scale, orientation, and position of the x
and y axes.

94 Chapter 9: MORE FONTS

The graphics state maintains a Current Transformation Matrix,
which defines how all images are positioned on the current page.
The translate, rotate, and scale operators change elements in
this matrix in order to modify the user coordinate system.

A separate transformation matrix is associated with each font,
defining how the characters in the font are to be printed onto the
current page. This font matrix can be altered directly with the
makefont operator, which takes a font dictionary and a six-
element array from the stack, transforms the dictionary’s font
matrix by the array, and then pushes the new font dictionary onto
the stack.

In the discussion that follows, we shall only be examining trans-
formation matrices that result in straightforward scaling of the
font. Such matrices have the form

[m 0 0 n 0 0]

where m and n are the desired scales in x and y, respectively.

Thus, the lines

/Helvetica-Bold findfont 6 scalefont
/Helvetica-Bold findfont [6 0 0 6 0 0] makefont

do exactly the same thing: create a six-point Helvetica Bold font
dictionary.

The makefont operator allows you to create condensed or ex-
panded fonts by suitably changing the contents of the font
matrix. The following program demonstrates this technique.

% ---- Variables & Procedures ----
/basefont /Times-Roman findfont def
/LM 72 def

/newline
{ currentpoint 13 sub
exch pop LM
exch moveto } def

9.3 FONT TRANSFORMATIONS 95

% ----- Begin Program ------
LM 600 moveto

%normal print:
basefont [12 0 0 12 0 0] makefont setfont"Talking of axes,"

said the Duchess,
"Off with her head!"
 - Lewis Carroll

("Talking of axes,") show newline
%expanded:
basefont [17 0 0 12 0 0] makefont setfont
(said the Duchess,) show newline
%condensed:
basefont [7 0 0 12 0 0] makefont setfont
("Off with her head!") show newline
basefont [12 0 6.93 12 0 0] makefont setfont
(- Lewis Carroll) show

showpage

Two variables are used here: our usual LM and a variable
basefont, whose value is the Times Roman font dictionary.

The program moves to the top of the page and prints four lines,
each time transforming the current font with a different font
matrix. The first of these,

[12 0 0 12 0 0]

creates a normal twelve-point Times Roman font. The second,

[17 0 0 12 0 0]

scales the horizontal direction more than the vertical; the height
of each character is that of a twelve-point font, while the width is
appropriate to a seventeen-point font. The characters are wider,
the font is expanded.

The third matrix used,

[7 0 0 12 0 0]

results in a condensed font.

The last matrix in our example,

[12 0 6.93 12 0 0]

96 Chapter 9: MORE FONTS

has a non-zero value as its third element. The third element in a
transformation matrix affects the angle by which the font is
obliqued. To oblique a font by θ degrees, set the third element in
the transformation matrix to y×tanθ, where y is the point size of
the font.

The 6.93 in our last matrix above is the product 12×tan30, so our
characters are obliqued thirty degrees.

All of these effects could have been obtained by transforming
user space with scale or setmatrix. However, these operators af-
fect the appearance of everything printed on the current page. If
only the text should be expanded, compressed, or obliqued, then
makefont is the most appropriate operator.

9.4 CHARACTER OUTLINES

Each font dictionary contains descriptions of the shapes of its
characters. Most fonts describe their characters as outlines that

Most font characters are
described as outlines to be filled.

are filled when the character is printed. Other fonts describe
characters as lines to be stroked or as bit maps.

Outlined and stroked character descriptions may be directly used
with the charpath operator. This operator takes a string and a
boolean value from the stack and adds to the current path the
character outlines that describe the string. The boolean value
determines what type of outline to leave. If false, the path ex-
actly mirrors the character descriptions in the font dictionary; if
true, the path differs from the character description in that any
parts of the character that are normally stroked are outlined. If a
font’s characters are all filled, rather than stroked, then there will
be no difference in the paths returned with true and false. (This
is true of Times, Helvetica, and Symbol characters.)

For example, the program lines below would result in the paths
illustrated at left, if they were embedded in the proper program.
(The font used here is Courier, whose characters are stroked.)

(A) false charpath

(A) true charpath

(A) false charpath
(A) true charpath

The path constructed by charpath can be stroked or filled.

9.4 CHARACTER OUTLINES 97

Let us end chapter eight with a program that generates an image
similar to that reduced at left. We shall print the word Adobe in
outlined characters at several rotations around the origin, and
then print an outlined, white-filled Adobe Systems.

% -------- Procedures --------
/Helvetica-Bold findfont

30 scalefont setfont

/oshow %stack: (string)

{ true charpath stroke } def
/circleofAdobe
{ 15 15 345

{ gsave
rotate 0 0 moveto
(Adobe) oshow
grestore

} for
} def
% --- Begin Program ---
250 400 translate

.5 setlinewidth
circleofAdobe
0 0 moveto
(Adobe Systems) true charpath
gsave 1 setgray fill grestore
stroke

showpage

This program’s oshow procedure prints the outline of a string’s
characters.

/oshow %stack: (string)
{ true charpath stroke } def

It pushes the boolean true over the string on the stack, calls the
charpath operator, and then strokes the resulting path onto the
current page.

CircleofAdobe sets up a for loop that rotates the coordinate sys-
tem to every multiple of fifteen degrees and prints the outlined
word Adobe at every rotation.

98 Chapter 9: MORE FONTS

/circleofAdobe
{ 15 15 345
{ gsave
rotate 0 0 moveto
(Adobe) oshow
grestore

} for
} def

Finally, the program translates the origin to the middle of the
page, calls circleofAdobe, and then outlines and fills the words
Adobe Systems.

0 0 moveto
(Adobe Systems) true charpath
gsave 1 setgray fill grestore
stroke

Note that we put the fill operation inside a gsave-grestore pair
so that we could both fill and stroke the character path. Our font
in this program has filled characters, so the choice of true or
false for this program’s charpath operators did not matter.

9.4 CHARACTER OUTLINES 99

9.5 OPERATOR SUMMARY

Character and Font Operators

kshow proc str ⇒ —
Execute proc between showing characters in str

makefont fdict matrix ⇒ fdict
Return new font dictionary with transformed font matrix

Path Construction Operators

charpath str bool ⇒ —
Add character outlines to current path

100 Chapter 9: MORE FONTS

CHAPTER 10

10.1 CLIPPING PATH

The POSTSCRIPT graphics state maintains a clipping path, which
represents the boundaries of the region on the current page into
which images can be painted. Initially, this path corresponds to
the edges of the paper used by the printer. The current clipping
path can be changed with the clip operator. The clip operator
makes the current path the clipping path; all future painting
operations will be clipped so that only those parts that lie within
this path are actually transferred to the current page.

For example, the following program constructs a triangular path
and makes it the clipping path. It then draws a grid of horizontal
and vertical lines, only parts of which actually are painted onto
the current page.

% ---- Procedures ----
/trianglepath
{ newpath
0 0 moveto
144 0 lineto
72 200 lineto

closepath } def

101

/verticals
{ newpath

0 9 144
{ 0 moveto
0 216 rlineto } for

stroke } def
/horizontals
{ newpath
0 10 200
{ 0 exch moveto
144 0 rlineto } for

stroke } def
% ---- Begin Program ---
230 300 translate
trianglepath clip %set clipping path
verticals %Do grid
horizontals

showpage

The procedure trianglepath constructs a triangular path with a
base 144 units long and a height of 200. Verticals and
horizontals draw a series of vertical and horizontal lines, respec-
tively.

The program calls trianglepath and then the clip operator. The
grid is then drawn with verticals and horizontals; since the im-
ageable portion of the current page has been clipped, only that
part of the grid that falls within the triangle ends up on the page

Only the part of the grid that falls
within the triangular clipping path
reaches the current page.

(see illustration at left).

Any path can be used as a clipping boundary, including the char-
acter path left by a charpath operator. For example, the follow-
ing program prints a series of line segments radiating from the
origin clipped to the character path of the name StarLines.

102 Chapter 10: CLIPPING AND LINE DETAILS

% -------- Procedures ---------------
/Times-BoldItalic findfont

27 scalefont setfont

/rays
{ 0 1.5 179
{ gsave

rotate
0 0 moveto 108 0 lineto
stroke

grestore
} for

} def
% -------- Begin Program ---------
300 400 translate

.25 setlinewidth

newpath
0 0 moveto
(StarLines) true
charpath clip
newpath
54 −15 translate
rays

showpage

The rays procedure draws our radiating lines by repeatedly rotat-
ing the coordinate system and drawing a line along the x axis.

rotate
0 0 moveto 108 0 lineto
stroke

The angle of rotation is determined by a for loop that steps
through the angles from 0 to 179 in 1.5-degree intervals.

The program, having defined rays, moves to the center of the
page, sets the line width to a quarter of a unit, and then sets up
the character outline of the string StarLines as a clipping path.

10.1 CLIPPING PATH 103

newpath
0 0 moveto
(StarLines) true
charpath clip

The origin is translated to below the center of the string-shaped
clipping path and the rays procedure called.

newpath
54 −15 translate
rays

A clipping path does not restrict where an object may be drawn,
only what parts of that object will affect the current page. An
object drawn outside of the current clipping path will not cause

EFGHIJKLMNOPQRSTUVWXYZabcdefg
EFGHIJKLMNOPQRSTUVWXYZabcdefg
FGHIJKLMNOPQRSTUVWXYZabcdefg

ΕΦΓΗΙϑΚΛΜΝΟΠΘΡΣΤΥςΩΞΨΖαβχδεφγ
EFGHIJKLMNOPQRSTUVWXYZabcdefg
EFGHIJKLMNOPQRSTUVWXYZabcdefg
FGHIJKLMNOPQRSTUVWXYZabcdefg

ΕΦΓΗΙϑΚΛΜΝΟΠΘΡΣΤΥςΩΞΨΖαβχδεφγ

Any image, graphics, or text can
be printed within a clipping path.

an error, it will just not appear on the current page.

10.2 LINE-DRAWING DETAILS

The POSTSCRIPT language gives complete control over how the
stroke operator converts a path into a painted line or curve. The
setlinewidth operator determines the width of the stroked line.
There are several operators that allow us to precisely determine
other characteristics of a stroked path. Among these are:

setlinecap Determines the appearance of line segment ends.

setlinejoin Determines the method by which different line
segments are joined.

setdash Determines the pattern for dashed lines.

We shall examine each of these operators in turn.

setlinecap

The setlinecap operator takes a number from the stack and uses
it as a code determining how POSTSCRIPT will end stroked line
segments. For example, the program line

1 setlinecap

would cause POSTSCRIPT to paint all line segments with round
ends.

104 Chapter 10: CLIPPING AND LINE DETAILS

There are three values for the line cap code:

0 Butt caps. The line segment has square ends perpen-Linecap = 0; Butt caps

Linecap = 1; Round caps

Linecap = 2; Projecting caps

dicular to the path. This is the POSTSCRIPT default line
cap.

1 Round caps. The line segment ends with semicircular
caps with diameters equal to the width of the line.

2 Projecting square caps. These are similar to butt caps,
but extend one-half of a line width beyond the line
segment’s endpoint.

setlinejoin

When two connected line segments are stroked, POSTSCRIPT

needs to make a decision about what type of joint to use between
them. The setlinejoin operator tells POSTSCRIPT how to join
connecting line segments. This operator is similar to setlinecap,
in that it takes a code from the top of the stack. This code can
have values from zero to two, corresponding to the following
types of line joins:

Linejoin = 0; Miter joins

Linejoin = 1; Round joins

Linejoin = 2; Bevel joins

0 Mitered join. The edges of the stroke are extended until
they meet. This is the default join. This join is affected
by the current miter limit (see below).

1 Rounded join. The segments are connected by a circular
join with a diameter equal to the line width.

2 Bevel join. The segments are finished with butt end caps
and the notch at the larger angle between the segments is
filled with a triangle.

Miter Limit

Mitered joins can present a problem. If two line segments meet
at an extremely small angle, the mitered join can produce a spike
that extends a considerable distance beyond the intersection of
the path segments. To prevent this, the join switches from
mitered to beveled when the angle between line segments be-
comes too acute.

10.2 LINE-DRAWING DETAILS 105

a

b

That is, if the current line join is 0, line segments will normally
be connected with a mitered joint (see a, at left). However, if the
angle between the two segments is too small, the connection is
beveled (as in b).

The angle at which this changeover is made is determined by the

lw

The miter limit is the maximum
 ratio of l/w.

current miter limit. The miter limit is the maximum ratio of the
diagonal line through a join to the width of the lines producing
the join (see at left). This ratio can be set by the setmiterlimit
operator, which takes a number from the stack and makes it the
new miter limit. The smaller this number is, the less tolerant
POSTSCRIPT becomes of small mitered angles and the sooner it
will switch to beveled joins. The default POSTSCRIPT miter limit
is ten, specifying a miter limit angle of about eleven degrees.

10 setmiterlimit

3 setmiterlimit

The illustration at left shows two line segments intersecting at an
angle of thirty degrees. In the upper figure, the miter limit is the
default 10; in the lower, the limit has been changed to 3. The
angle is the same, but the lower miter limit causes the second
pair to be beveled, rather than mitered.

setdash

The current path is normally stroked with a solid line. Other
methods of stroking a path are possible, however. The
POSTSCRIPT graphics state includes a dash array and a dash
offset that together describe what pattern of alternating black and
white dashes should be used to stroke paths.

This pattern is set by the setdash operator, which takes an array
and a number from the stack and makes them the current dash
array and offset. The array contains a set of numbers, such as

[3 5 1 5]

which represent the lengths of alternating black and white seg-
ments should make up a stroked line. The array above would
cause all paths to be stroked with a repeating sequence consisting
of three units of black, five units of no ink, one unit black, five

[3 5 1 5] 0 setdash units no ink. This pattern will repeat along the entire stroked path
(see illustration at left).

106 Chapter 10: CLIPPING AND LINE DETAILS

The second argument passed to setdash is the offset within the
dash pattern where the stroke operator is to start when it prints a
line. That is, if we were to set the dash pattern with the line

[6 3] 3 setdash

stroked lines would begin three units into the pattern, or halfway
through the first long dash.

The following program illustrates the effects of the setdash argu-
ments on the appearance of stroked lines. It draws two thick ver-
tical lines and then draws a series of horizontal lines between
them, each with a different dash pattern or offset. The horizontal
lines are numbered with their vertical positions above the origin.

% ------- Variables & Procedures --------130

115

100

85

70

55

40

25

10

/ypos 130 def
/Times-Roman findfont 6 scalefont setfont

/prt-n
{ () cvs show } def
/borders
{ −2.5 0 moveto 0 135 rlineto
102.5 0 moveto 0 135 rlineto
stroke } def

/newline
{ /ypos ypos 15 sub def } def
/doLine
{ 0 ypos moveto 100 0 rlineto stroke
5 ypos 2 add moveto ypos prt-n
newline } def

% -------- Begin Program --------
250 350 translate

5 setlinewidth
borders

10.2 LINE-DRAWING DETAILS 107

.5 setlinewidth
[] 0 setdash doLine %empty array for solid line
[4 2] 0 setdash doLine
[2 4] 0 setdash doLine
[6 4 2 4] 0 setdash doLine
[4 4] 0 setdash doLine
[4 4] 1 setdash doLine
[4 4] 2 setdash doLine
[4 4] 3 setdash doLine
[4 4] 4 setdash doLine

showpage

Much of this program is familiar to us already. The newline pro-
cedure decrements the variable ypos, which holds the current
vertical position. Prt-n converts a number to a string and prints it
on the current page. Borders draws two vertical lines one
hundred units apart.

The doLine procedure draws a line, prints the value of ypos
above the line, and then decrements ypos.

/doLine
{ 0 ypos moveto 100 0 rlineto stroke

5 ypos 2 add moveto ypos prt-n
newline } def

The program moves the origin to the middle of the page and
prints the vertical borders in 5-unit-wide lines.

5 setlinewidth
borders

The line width is reset to .5 and nine horizontal lines are drawn,
each with a different dash pattern or offset.

The first dash pattern,

[] 0 setdash doLine

has an empty dash array, signifying a solid line. The offset is
unimportant in this case. The next three lines,

108 Chapter 10: CLIPPING AND LINE DETAILS

[4 2] 0 setdash doLine
[2 4] 0 setdash doLine
[6 4 2 4] 0 setdash doLine

draw lines of various dash patterns. The last five lines have the
same pattern, but different offsets.

[4 4] 0 setdash doLine
[4 4] 1 setdash doLine
[4 4] 2 setdash doLine
[4 4] 3 setdash doLine
[4 4] 4 setdash doLine

For more information on the setdash operator, refer to the
POSTSCRIPT Language Reference Manual and the POSTSCRIPT

Language Cookbook.

10.2 LINE-DRAWING DETAILS 109

10.3 OPERATOR SUMMARY

Graphics State Operators

clip — ⇒ —
Set clipping boundary to current path

setdash ary n ⇒ —
Set dash array

setlinecap 0/1/2 ⇒ —
Set shape of stroked line ends

setlinejoin 0/1/2 ⇒ —
Set shape of stroked line joins

setmiterlimit num ⇒ —
Set maximum miter ratio

110 Chapter 10: CLIPPING AND LINE DETAILS

CHAPTER 11

IMAGES

11.1 THE IMAGE OPERATOR

Digital electronics typically handles photographic information by
dividing the picture up into small sections and recording the
brightness and grey value or color of each section. A television
image is such a sampled image, as are the graphics produced by
most computer systems. Each sample of the original image is
reproduced onto a section of the final printed image. This small
piece of black, white, gray, or color is called a picture element,
or pixel.

The POSTSCRIPT language prints sampled images with the image
operator. This operator interprets the character codes of the
characters of a string as a series of bits that describe an image,
beginning at the image’s lower left corner.

For example, the string “AB” consists of two characters, whose
default encodings are decimal 65 and 66. The image operator
would interpret this string as the series of bits that are the binary
representation of these numbers. That is, the binary sequence

01000001 01000010

The image operator interprets the bits passed to it as a descrip-
tion of the gray values of a stream of pixels of from one to eight
bits each.

111

The image operator prints its results in a one-unit square whose
lower left corner is at the origin. Thus, the image rendered by the
image operator in the default user coordinate system will be 1/72
inch on a side. Before using image, one needs to translate the
origin to the desired location of the image and scale to the image
size required.

Using image

The image operator takes five arguments:

• Scan length
Number of samples per scan line.

• Scan lines
Number of scan lines in the image.

• Bits per sample
The number of bits making up each sample. Permissible
values are 1, 2, 4, and 8. An image with one bit per sample
will print only black and white. An eight bit-per-sample
image can specify values ranging from 0 (black) to 255
(white).

• Transform matrix
A six-element array that determines the mapping of
samples into the one-unit-square imaging region. (For a
more detailed description of POSTSCRIPT transform
matrices, refer to section 4.6 of the POSTSCRIPT Language
Reference Manual.) For an image n samples wide made up
of m lines, the matrix

[n 0 0 m 0 0]

will cause the image to exactly fill the unit square. Many
graphics programs generate images whose data begins at
the upper left corner of the image, rather than the lower
left. In these cases, the matrix

[n 0 0 −m 0 m]

will allow proper rendering of the image.

• Procedure
This is the procedure that produces the data strings needed
by image. This can be any POSTSCRIPT procedure that

112 Chapter 11: IMAGES

leaves a string on the stack. The image operator will take
this string and interpret its characters as sample data. If the
string does not describe the complete image, the image
operator will call this procedure again, repeating until the
number of samples implied by the first three arguments
have been processed. The image operator ignores any
unused data left in the string at the end of the image; it also
ignores any bits left in its current character of data at the
end of a scan line.

A Binary Image

The program below prints an eight by eight binary image one

inch on a side.

300 400 translate %Move image to middle of page
72 72 scale %Make image one inch on a side

8 8 1 [8 0 0 8 0 0] {<c936>} image

showpage

The first two lines of this program scale the unit square to the
desired position and size. This will determine the location and
size of the printed image.

The third line,

8 8 1 [8 0 0 8 0 0] {<c936>} image

prints an eight pixel by eight line image, each pixel being one
bit; the transform matrix will fill the unit square (scaled to a one
inch square) with the image.

The procedure argument in the line above introduces a new type
of string. Angle brackets enclose a hexadecimal string. Each pair
of characters in this string is interpreted as a hexadecimal num-
ber making up one character of the string. Thus, the string
<c936> has two characters whose character codes are
hexadecimal C9 and 36. The image operator will take any kind
of string, but hex strings are useful in specifying bitmaps.

The procedure specified for the image operator in our example

11.1 THE IMAGE OPERATOR 113

will place this two-character string on the stack every time it is
called. This string will be interpreted as a sequence of sixteen
bits:

1 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0

1 1 0 0 1 0 0 1
0 0 1 1 0 1 1 0
1 1 0 0 1 0 0 1
0 0 1 1 0 1 1 0
1 1 0 0 1 0 0 1
0 0 1 1 0 1 1 0
1 1 0 0 1 0 0 1
0 0 1 1 0 1 1 0

8 8 1 [8 0 0 8 0 0] {<c936>} image

Since each line of our image is eight one-bit samples wide, each
call of the procedure will supply data for two lines. The image
operator calls the procedure four times in making the image. The
illustration at left indicates the correspondence between the data
and the resulting image.

Bits per Sample

The following program takes the image from the previous ex-
ample and prints it four times with different numbers of bits per
sample.

72 500 translate

72 72 scale
8 8 1 [8 0 0 8 0 0] {<c936>} image

0 −1.25 translate
8 8 2 [8 0 0 8 0 0] {<c936>} image

0 −1.25 translate
8 8 4 [8 0 0 8 0 0] {<c936>} image

0 −1.25 translate
8 8 8 [8 0 0 8 0 0] {<c936>} image

showpage

The images at left, from top to bottom, represent the hex string
<c936> interpreted as one, two, four, and eight bits per sample.
The first square is identical to our previous example. The second
sees the string as an eight-sample sequence:

11 00 10 01 00 11 01 10

This sequence makes up one line of samples which is repeated

114 Chapter 11: IMAGES

for each line in the image. The last two squares interpret the data
as four- and two-sample sequences, respectively:

1100 1001 0011 0110

11001001 00110110

Aspect Ratio

The program below prints the bitmapped image of a helicopter in
a one inch square.

/Helicopter
<dd ff 00 ff 54 1f 80 03 fb f9 00 1e> def

300 400 translate
72 72 scale

16 6 1 [16 0 0 6 0 0] {Helicopter} image

showpage

The program is very similar to our first example, with only two
differences:

1. The procedure argument for the image operator returns the
complete bitmap and is only called once.

2. The bitmap is not square. It contains six lines of sixteen
samples each.

The second difference leads to a problem with our program. We
are mapping a sixteen by six bitmap into a 72 by 72 square. The
result is that our pixels are tall and skinny and our image is dis-
torted. For our image to be properly proportioned, the sides of
the square into which the image is mapped (as set by the scale
operator) should have a ratio equal to those of the bitmap being
printed.

Thus, if the line that contains the scale operator in the program
above is changed to

72 27 scale

11.1 THE IMAGE OPERATOR 115

(a ratio of 16 to 6), the bitmap proportions and the unit square
proportions will match, and the helicopter will come out as at
left.

116 Chapter 11: IMAGES

11.2 OPERATOR SUMMARY

Graphics Output Operators

image scanlen #lines b/p [transform] {proc} ⇒ —
Render image onto current page

Polymorphic Operators

putinterval obj i obj ⇒ —1 2
Copy obj into obj starting at i2 1

11.2 OPERATOR SUMMARY 117

CHAPTER 12

12.1 APPLE LASERWRITER

The Apple LaserWriter is the most widely available POSTSCRIPT

printer. Among its features is an interactive mode that allows the
user to communicate directly with the POSTSCRIPT interpreter.
This allows the printer to be programmed directly in
POSTSCRIPT.

The LaserWriter contains a complete implementation of
POSTSCRIPT. All of the sample programs presented in this
manual may be sent to the LaserWriter.

Preparing the LaserWriter

The LaserWriter can be used with any computer or terminal that
can communicate through an RS-232 port. The host computer
will need a telecommunication program (such as MacTerminal
on a Macintosh) for interactive communication with a
LaserWriter.

To prepare the LaserWriter for interactive use:

• Connect the RS-232 port of the LaserWriter to that of the
host computer. Depending on the host computer, this will
require a cable with either two 25-pin connectors or a 25-

119

pin and a 9-pin connector (such as a Macintosh modem
cable).

• Set the LaserWriter’s select switch to either 1200 baud or
9600 baud, as desired.

• Turn on the LaserWriter and start the computer’s telecom-
munication program. The program should use the follow-
ing:

• Baud rate of 1200 or 9600, depending on the printer’s
switch setting.

• XON/XOFF protocol.

• Seven bit data.

• No Parity.

At this point your keyboard input will be sent through the serial
link to the LaserWriter. To start the LaserWriter’s interactive
mode, type the command executive followed by a return (this
will not be echoed). You will receive an opening message from
the interpreter and then a command prompt:

PS>

Using Interactive Mode

You will now be typing directly to the POSTSCRIPT interpreter.
All input will be interpreted as POSTSCRIPT code. You can send
programs to the interpreter in two ways:

• You can type the program directly into the interpreter.
Each line of POSTSCRIPT code will be carried out as it is
received by the printer.

• You can use the telecommunications program to download
a previously-prepared text file that contains a POSTSCRIPT
program. If you are using MacTerminal, you should use
the following file transfer settings:

• Transfer Method: Text.
• Remote System: Other.
• Retain Line Breaks: Yes.
• Word Wrap Outgoing Text: No.

120 Chapter 12: POSTSCRIPT PRINTERS

Leaving Interactive mode

To leave interactive mode, type in the POSTSCRIPT command
quit. Do not forget to return the LaserWriter’s switch to the set-
ting appropriate to its use as a printer.

For a complete discussion of the LaserWriter’s interactive mode,
please refer to the section on the Apple LaserWriter in the
POSTSCRIPT Language Reference Manual.

12.1 APPLE LASERWRITER 121

INTRODUCTION

The POSTSCRIPT Language Cookbook is a collection of complete
programming examples intended to teach you how to write
programs in the POSTSCRIPT language. It is assumed that you
have covered the material in the POSTSCRIPT Language Tutorial
(the first half of this book), have access to the POSTSCRIPT Lan-
guage Reference Manual and have some programming back-
ground. It is possible, though, for someone with very little pro-
gramming experience to use the ‘‘Cookbook’’ effectively.

The ‘‘recipes’’ (programming examples) presented in the Cook-
book fall into two basic categories: programs that are ‘‘ready to
use’’ and programs that are intended as ‘‘inspiration.’’ Many of
the programs contain commonly used procedure definitions that
may be inserted into larger programs without modification. For
example, an application that prints geometric objects would in-
clude the procedure to draw an ellipse as presented in the
program ‘‘Elliptical Arcs.’’ Other programs are most useful for
the techniques presented; they demonstrate specific applications
to serve as a model for other applications or to serve as a starting
point for further development.

FORMAT OF THE EXAMPLES

Each programming example begins with a reduced version of the
output page produced by the program. The 8-1/2 inch by 11 inch
page has been reduced to be 70% of its original size. Small tick-
marks near the top edge and the left edge of the page indicate

125

scaled inches for easier reference. There is also a scale at the
bottom of the page that shows the measurement of an inch for
this reduced page size.

The pages that present the actual programs have been divided
into two columns. The left column is the program itself. The
right column is a commentary on the program.

In the case of programs that are two pages long, the output page
is intentionally repeated.

HOW TO USE THE COOKBOOK

The POSTSCRIPT Language Cookbook is divided into four sec-
tions: Basic Graphics, Printing Text, Applications, and Modify-
ing and Creating Fonts. Each section begins with a brief discus-
sion of the important points presented and is followed by a col-
lection of program examples. The programs in the Cookbook
cover a range of difficulty. The easier programs tend to be near
the beginning and the more complex programs towards the end,
although there is no clearly defined progression of difficulty.

Each program is independent of the others but occasionally the
commentary for a program may rely on commentary from an
earlier program. In such cases a reference is made to the earlier
program.

The best way to use the Cookbook is to try running the programs
on a POSTSCRIPT interpreter (usually resident in a printer). Then
try modifying the program by changing arguments to procedures,
for example, or by using different fonts. You can also try com-
bining procedure definitions from various programs to create
more sophisticated programs.

The Cookbook attempts to present a reasonable programming
style and you may find that you develop your own POSTSCRIPT

programming style. POSTSCRIPT is a very rich language (there
are approximately 250 operators in the standard language!) and
there are often many different ways of expressing the same
operation. For example, the following two program fragments
achieve the same result: they copy the top two elements of the
operand stack.

126 INTRODUCTION

2 copy

1 index 1 index

Many of the programs contain commonly used POSTSCRIPT pro-
gramming idioms. One such idiom is the program fragment to
push the coordinates of the bounding box of a character onto the
operand stack:

newpath
0 0 moveto
(A) true charpath flattenpath pathbbox

This series of operators is used every time the bounding box of a
character needs to be determined. (This idiom is explained in
detail in the ‘‘Setting Fractions’’ and ‘‘Printing with Small
Caps’’ program examples.)

Occasionally you will find that efficiency was sacrificed for
clarity in some of the examples (clarity was more important in
this tutorial presentation). More efficient implementations are
left as exercises to the reader.

HOW TO USE THE COOKBOOK 127

Repeated Shapes

Expanded and Constant Width Lines

Elliptical Arcs

Drawing Arrows

Centered Dash Patterns

Printing Images

PROGRAMS 1– 6

BASIC GRAPHICS

The programs presented in this section are generally simpler in
nature than programs presented in later sections. They con-
centrate on the basic techniques for defining shapes, performing
coordinate system transformations and printing images.

ABOUT THE PROGRAMS

The first program, ‘‘Repeated Shapes,’’ demonstrates a synthesis
of many of the basic POSTSCRIPT graphic constructs: defining
paths, using the scale and rotate transformations, and using the
graphic output operators fill and stroke. It exemplifies how a
short and simple POSTSCRIPT program can generate interesting
graphic images.

The next program, ‘‘Expanded and Constant Width Lines,’’
shows how to control the scaling transformation to get dif-
ferently scaled lines. The techniques presented in this program
are not only restricted to lines but may be applied to any other
graphic object including fonts.

‘‘Elliptical Arcs’’ introduces an important technique: using dic-
tionaries to define local variables (see description below). In ad-
dition, it demonstrates how to build a procedure, ‘‘ellipse,’’ from
the standard POSTSCRIPT operators. The behavior and argument
list of the ‘‘ellipse’’ procedure are modeled after the arc
operator. Users are free to define new procedures in
POSTSCRIPT: this is what makes the language so powerful and
flexible.

129

‘‘Drawing Arrows’’ defines a general procedure that can be used
to draw any kind of straight arrow. This is a useful primitive in
the larger context of making illustrations.

‘‘Centered Dash Patterns’’ focuses on a detail of the setdash
operator: the offset argument. By carefully calculating the value
of the offset, it’s possible to center any dash pattern on any path.
Included in this program is a useful general procedure,
‘‘pathlength,’’ that computes the length of any arbitrary path in
the current user space.

‘‘Printing Images’’ demonstrates how to use the image operator,
how to modify the transfer function, and how to read the data for
the image from the current file. This technique of reading data
from the current file can be applied to many other situations such
as text processing.

DICTIONARIES AND LOCAL VARIABLES

The POSTSCRIPT language is not as highly structured as other
programming languages such as Pascal or Algol. There is no ex-
plicit method for specifying the scope of variables. Instead one
has to ‘‘simulate’’ the scoping mechanism through the careful
use of dictionaries, the dictionary stack, and the dictionary
operators.

First let’s review some of the basic concepts underlying the dic-
tionary mechanism. The def operator associates a key with a
value and that key-value pair is stored in the current dictionary.
The current dictionary is always the topmost dictionary on the
dictionary stack. A new dictionary can be created (using the dict
operator) and it can be pushed onto the dictionary stack (using
the begin operator), thereby making it the current dictionary.

When the POSTSCRIPT interpreter encounters a name, it searches
for a definition of that name in the dictionary stack beginning
with the topmost (current) dictionary and working its way down
the dictionary stack until it finds the first instance of that name.
Due to the nature of this name search process, dictionaries be-
come the context for the scope of names.

Local variables are simulated by creating a new dictionary,

130 BASIC GRAPHICS

pushing it onto the dictionary stack, performing def operations,
and then popping that new dictionary. As long as the new dic-
tionary remains on the dictionary stack, we will find the ‘‘local’’
value for the variable when a name search is done. Once the new
dictionary is popped from the dictionary stack, the values for
names defined within the context of this dictionary will no
longer be found (although if a variable by that same name were
defined in another dictionary still on the dictionary stack, that
value would be returned in the name search). Methodically push-
ing and popping dictionaries is what gives variables their scope.
The following example illustrates this mechanism:

Example:

/thestring (global) def % 1
thestring = % 2
/exampledict 1 dict def % 3
exampledict begin % 4

thestring = % 5
/thestring (local) def % 6
thestring = % 7

end % 8
thestring = % 9

The output produced by this program looks like:

global
global
local
global

Description of the program: The first line defines the variable
‘‘thestring’ to have the value ‘‘(global).’’ Line 2 prints the value
of ‘‘thestring’’ on the standard output. Line 3 creates a diction-
ary called ‘‘exampledict’’ to be used for local storage of vari-
ables. Line 4 pushes ‘‘exampledict’’ onto the dictionary stack,
making it the current dictionary. Line 5 prints the value of
‘‘thestring’’ again. Since ‘‘thestring’’ has not yet been defined in
the current dictionary, the value in the next-to-topmost diction-
ary is printed. Line 6 defines ‘‘thestring’’ to have the value
‘‘(local)’’ within the context of ‘‘exampledict’’ and this value is
the one found when ‘‘thestring’’ is printed in line 7. Line 8 pops
‘‘exampledict’’ from the dictionary stack. Line 9 prints the

DICTIONARIES AND LOCAL VARIABLES 131

original value of ‘‘thestring’’ since the value defined in
‘‘exampledict’’ is no longer found.

The dictionary mechanism can be used with POSTSCRIPT

procedures to simulate local variables in the following manner:
create a new dictionary that is large enough to hold all the defini-
tions made within the procedure. The first operation in the proce-
dure should push this dictionary onto the dictionary stack and the
last operation in the procedure should pop it from the dictionary
stack. The following is a small example that can be used as a
template:

/localdict 1 dict def
/sampleproc

{ localdict begin
/localvariable 6 def

end
} def

In general it is not a good idea to create the dictionary within the
procedure because each procedure call allocates new memory for
the dictionary. This can use up a lot of virtual memory if the
procedure is called repeatedly. The following example illustrates
a procedure that creates a new dictionary each time the proce-
dure is executed:

/sampleproc
{ 1 dict begin % this allocates new VM each time

/localvariable 6 def
end

} def

Although it uses more memory, the above method does have the
advantage that each time the procedure is called, an entirely new
context is created, whereas with the previous method, the old
context is invoked each time the procedure is called.

There is another method for pushing a dictionary onto the dic-
tionary stack as the first operation in a procedure without having
to give the dictionary a name. This technique is advantageous for
two reasons. The first reason is that it serves as a form of
‘‘information hiding’’ since the dictionary cannot be accessed by
name; it can only be accessed within the procedure that contains

132 BASIC GRAPHICS

it. The second reason is that it saves key (name) space in the
enclosing dictionary where the procedure definition is made
since the dictionary itself has no name; the savings on name
space become significant when many procedures requiring local
variables are defined in a program.

/sampleproc % 1
{ 0 begin % 2

/localvariable 6 def % 3
end % 4

} def % 5
/sampleproc load 0 1 dict put % 6

Recall that procedures are actually executable arrays. The ‘‘0’’
in line 2 of the program merely serves as a placeholder for the
reference to the local dictionary. Line 6 creates the dictionary
and inserts it into the placeholder position. First the procedure is
pushed onto the operand stack as an array object. Then the dic-
tionary is created and inserted as the zeroth element of the proce-
dure array. From now on a reference to the dictionary will exist
in the zeroeth position of the procedure array. When the proce-
dure is called, the first operation pushes the dictionary onto the
dictionary stack. This technique is used in the programs
‘‘Creating an Analytic Font’’ and ‘‘Creating a Bitmap Font.’’

DICTIONARIES AND LOCAL VARIABLES 133

1 inch
72 points

135

Program 1 / Repeated Shapes

This program prints a rosette design by defining a
section of that design and then printing that section
repeatedly. This program illustrates the for and arc
operators, and it shows how coordinate transformations
can be nested to use the most convenient coordinate
system for each part of a design.

/inch {72 mul} def

/wedge
 { newpath
 0 0 moveto
 1 0 translate
 15 rotate
 0 15 sin translate
 0 0 15 sin -90 90 arc
 closepath
 } def

Define an ‘‘ice cream cone’’ shape with the arc
operator. This shape will have a 30 degree angle topped
off with a semicircle. Set the path’s first point at the
current origin. Next, move the origin to the center of the
semicircle by translating to the right 1 unit, rotating
counter-clockwise by 15 degrees, and translating ‘‘up’’
in the rotated system by the radius of the semicircle. The
arc operator includes a straight line to the initial point
of the arc and a curved section to the end of the arc.
Note that the semicircle goes from -90 degrees to 90
degrees in the rotated coordinate system.

gsave Remember the default coordinate system.
 3.75 inch 7.25 inch translate Move into position for a sample of the wedge.
 1 inch 1 inch scale Make the edge of the wedge 1 inch long.
 wedge 0.02 setlinewidth stroke Draw the wedge with a 1/50 inch thick line.
grestore Get back to default coordinates.

gsave
 4.25 inch 4.25 inch translate Move into position for the rosette.
 1.75 inch 1.75 inch scale Make the edges of the rosette 1 3/4 inches long.
 0.02 setlinewidth Use a 7/200 inch thick line.
 1 1 12 Set up the for operator to iterate 12 times.
 { 12 div setgray Divide the loop index by 12 to set a gray value.
 gsave
 wedge

Enclose the ‘‘wedge’’ operation in a gsave - grestore
pair, as it will transform the coordinate system.

 gsave fill grestore Save the wedge path for use after the fill.
 0 setgray stroke Draw a black border around the wedge.
 grestore Get out of the coordinate system left by wedge.
 30 rotate Set up for the next section.
 } for Close the procedure body and execute the for operator.
grestore

showpage

1 inch
72 points

137

Program 2 / Expanded and Constant Width Lines

This example demonstrates different effects achieved
under the scaling transformation. Normally the line
width used with the stroke operator is scaled according
to the current user coordinate system. This is
demonstrated in the set of squares drawn on the left side
of the page. It is possible to maintain a constant line
width although the user coordinate system is being
scaled arbitrarily. This is shown in the set of squares
drawn on the right side of the page.

/inch {72 mul} def
/centersquare
 { newpath
 .5 .5 moveto -.5 .5 lineto
 -.5 -.5 lineto .5 -.5 lineto
 closepath
 } def

‘‘centersquare’’ will draw a unit square centered on the
current coordinate system origin. A square described in
terms of its center, rather than in terms of one of its
corners, is more convenient for this example since we
will be drawing concentric squares.

gsave Remember the original coordinate system.
 2.5 inch 6 inch translate Place the origin for the expanding line width squares.
 1 16 div setlinewidth
 1 1 5 Set up a ‘‘for’’ loop to execute five times.
 { gsave Remember the current coordinate system.
 .5 mul inch dup scale Scale the current units by 1/2 inch times the loop index.
 centersquare
 stroke

The stroked square has a line width proportional to the
current scale.

 grestore Return to the translated, unscaled coordinate system.
 } for
grestore Return to the original untranslated coordinate system.

gsave
 6 inch 6 inch translate Place the origin for the constant line width squares.
 1 setlinewidth Set the line width to be 1 point.
 /cmtx matrix currentmatrix def
 1 1 5

Store the current transformation matrix, i.e., the current
coordinate system, in the variable ‘‘cmtx’’.

 { gsave Remember the translated coordinate system.
 .5 mul inch dup scale Scale the squares as before.
 centersquare Create the square path, but don’t stroke it yet.
 cmtx setmatrix
 stroke

Change the coordinate space back to the unscaled one,
where the line width is truly 1/72nd of an inch thick. We
explicitly reset only the coordinate space rather than use
a grestore, since grestore resets the current path as
well as the current coordinate system.

 grestore
 } for

After stroking the path, return to the translated, unscaled
coordinate system.

grestore Return to the original untranslated coordinate system.
showpage

1 inch
72 points

139

Program 3 / Elliptical Arcs

This program demonstrates how to build a procedure for
drawing elliptical arcs from the basic POSTSCRIPT

graphic primitives. It also demonstrates the use of
dictionaries to implement local variables.

/ellipsedict 8 dict def Local storage for the procedure ‘‘ellipse.’’
ellipsedict /mtrx matrix put Allocate a matrix for the save matrix operation below;

make it local to the procedure ‘‘ellipse.’’

/ellipse
 { ellipsedict begin
 /endangle exch def
 /startangle exch def
 /yrad exch def
 /xrad exch def
 /y exch def
 /x exch def

‘‘ellipse’’ adds a counter-clockwise segment of an
elliptical arc to the current path. It takes six operands:
the x and y coordinates of the center of the ellipse (the
center is defined as the point of intersection of the major
and minor axes), the ‘‘radius’’ of the ellipse in the x
direction, the ‘‘radius’’ of the ellipse in the y direction,
the starting angle of the elliptical arc and the ending
angle of the elliptical arc. Since the first operation in
this procedure pushes ‘‘ellipsedict’’ onto the dictionary
stack and the last pops that dictionary from the
dictionary stack, all def operations are local in scope.

The basic strategy for defining the ellipse is to translate
to the center of the ellipse, scale the user coordinate
system by the x and y radius values, and then add a
circular arc, centered at the origin with a 1 unit radius to
the current path. We will be transforming the user
coordinate system with the translate and rotate
operators to add the elliptical arc segment but we don’t
want these transformations to affect other parts of the
program. In other words, we would like to isolate the
effect of the transformations. Usually the gsave and
grestore operators would be ideal candidates for this
task. Unfortunately gsave and grestore are
inappropriate for this situation because they do not save
the arc segment that has been added to the path. Instead
we will isolate the effect of the transformations by
saving the current transformation matrix and restoring it
explicitly after adding the elliptical arc to the path.

 /savematrix mtrx currentmatrix def Save the current transformation.
 x y translate Translate to the center of the ellipse.
 xrad yrad scale Scale by the x and y radius values.
 0 0 1 startangle endangle arc Add the arc segment to the path.
 savematrix setmatrix Restore the transformation.
 end
 } def

1 inch
72 points

141

Program 3 / Elliptical Arcs
(continued)

newpath
 144 400 72 144 0 360 ellipse
stroke

Draw a full ellipse and outline it with a stroke. Note
that the y-axis is longer than the x-axis.

newpath
 400 400 144 36 0 360 ellipse
fill

Draw a full ellipse and fill it with black. Note that the
y-axis is shorter than the x-axis.

newpath
 300 180 144 72 30 150 ellipse
stroke

Draw a portion of an elliptical arc and outline it with a
stroke.

newpath
 480 150 30 50 270 90 ellipse
fill

Draw a portion of an elliptical arc and fill it with black.
Note that although the path is not explicitly closed by
the ‘‘ellipse’’ procedure, the fill operation implicitly
closes the path for us.

showpage

1 inch
72 points

143

Program 4 / Drawing Arrows

This program demonstrates how to define a general
procedure for drawing various kinds of straight arrows.

/arrowdict 14 dict def Local storage for the procedure ‘‘arrow.’’
arrowdict begin
 /mtrx matrix def
end

Allocate a matrix for storing the current matrix below.
Make it local to the procedure ‘‘arrow.’’

/arrow
 { arrowdict begin
 /headlength exch def
 /halfheadthickness exch 2 div def
 /halfthickness exch 2 div def
 /tipy exch def /tipx exch def
 /taily exch def /tailx exch def

‘‘arrow’’ adds an arrow shape to the current path. It
takes seven arguments: the x and y coordinates of the
tail (imagine that a line has been drawn down the center
of the arrow from the tip to the tail, then x and y lie on
this line), the x and y coordinates of the tip of the arrow,
the thickness of the arrow in the tail portion, the
thickness of the arrow at the widest part of the
arrowhead and the length of the arrowhead.

 /dx tipx tailx sub def
 /dy tipy taily sub def
 /arrowlength dx dx mul dy dy mul add
 sqrt def
 /angle dy dx atan def

Compute the differences in x and y for the tip and tail.
These will be used to compute the length of the arrow
and to compute the angle of direction that the arrow is
facing with respect to the current user coordinate system
origin.

 /base arrowlength headlength sub def Compute where the arrowhead joins the tail.

 /savematrix mtrx currentmatrix def Save the current user coordinate system. We are using
the same technique to isolate the effect of
transformations as was used in the program to draw
elliptical arcs.

 tailx taily translate Translate to the starting point of the tail.
 angle rotate Rotate the x-axis to align with the center line of the

arrow.
 0 halfthickness neg moveto Add the arrow shape to the current path.
 base halfthickness neg lineto
 base halfheadthickness neg lineto
 arrowlength 0 lineto
 base halfheadthickness lineto
 base halfthickness lineto
 0 halfthickness lineto
 closepath

 savematrix setmatrix Restore the current user coordinate system.
 end
 } def

1 inch
72 points

145

Program 4 / Drawing Arrows
(continued)

newpath
 318 340 72 340 10 30 72 arrow
fill

Draw a filled arrow with a thin tail and a long
arrowhead.

newpath
 382 400 542 560 72 232 116 arrow
3 setlinewidth stroke

Draw an outlined arrow with a 90 degree angle at the
tip. To get a 90 degree angle, the ‘‘headthickness’’
should be twice the ‘‘headlength.’’

newpath
 400 300 400 90 90 200 200 3 sqrt mul 2 div
 arrow .65 setgray fill
showpage

Draw a gray-filled arrow that has an equilateral triangle
as its arrowhead. To get an equilateral triangle, the
‘‘headlength’’ should be the square root of 3 divided by
2 times the ‘‘headthickness.’’

1 inch
72 points

147

Program 5 / Centered Dash Patterns

This program demonstrates the use of the offset
argument to the setdash operator to center any dash
pattern on a continuous path. The algorithm presented
will not give the expected results if the path is
discontinuous or closed. Included in this example is a
very useful procedure, ‘‘pathlength,’’ that computes the
length of an arbitrary path.

/centerdash
 { /pattern exch def

The procedure ‘‘centerdash’’ will center a dash pattern
on a path such that the dashes at the end points are
identical. It takes an array describing the dash pattern as
its argument.

 /pathlen pathlength def In order to center the dash pattern on the path we need
to determine the length of the path. (See the definition
of ‘‘pathlength’’ below.)

 /patternlength 0 def
 pattern
 { patternlength add /patternlength exch def
 } forall

First determine the total length of the repeating pattern
by summing the elements of the dash array.

 pattern length 2 mod 0 ne
 { /patternlength patternlength 2 mul def } if

If the pattern array is an odd number of elements,
double the pattern length so that we can get identical
end points.

 /first pattern 0 get def Get the length of the first element in the pattern array
for use later.

 /last patternlength first sub def Calculate the length of the remaining part of the pattern.

 /n pathlen last sub patternlength idiv def
 /endpart pathlen patternlength n mul sub
 last sub 2 div def

Now calculate the offset provided to the setdash
operator so that the dashes at the end points are
identical. Think of the path as being composed of 4
distinct parts: 2 identical end parts, 1 part which is
composed of ‘‘n’’ repeating pattern pieces and 1 part
which is the remaining piece of the pattern. We can
compute the lengths of the remaining piece and the part
composed of ‘‘n’’ repeating pattern pieces and from
these determine the length of the end part.

 /offset first endpart sub def The amount of offset is then given by the difference in
length of the first part and the end part.

 pattern offset setdash
 } def

Set up the dashing parameters using the offset computed
above.

1 inch
72 points

149

Program 5 / Centered Dash Patterns
(continued)

/pathlength
 { flattenpath
 /dist 0 def

The procedure ‘‘pathlength’’ computes the length of any
given path. It does so by first ‘‘flattening’’ the path with
the flattenpath operator. flattenpath converts any
curveto and arc segments in a path to a series of
lineto segments. Then the pathforall operator is used
to access each segment in the path, find its length and
add the length to a total.

 { /yfirst exch def /xfirst exch def
 /ymoveto yfirst def /xmoveto xfirst def }

Remember the coordinates of the most recent moveto
so that the length of the closepath can be computed.

 { /ynext exch def /xnext exch def
 /dist dist ynext yfirst sub dup mul
 xnext xfirst sub dup mul add sqrt add def
 /yfirst ynext def /xfirst xnext def}

For each lineto segment, compute the distance between
the current point and the previous point.

 {} The curveto procedure does nothing since there
shouldn’t be any curveto segments in the path after a
flattenpath.

 { /ynext ymoveto def /xnext xmoveto def
 /dist dist ynext yfirst sub dup mul
 xnext xfirst sub dup mul add sqrt add def
 /yfirst ynext def /xfirst xnext def}

The coordinates for a closepath segment are the
coordinates of the most recent moveto.

 pathforall
 dist Leave the length of the path on the operand stack.
 } def

5 setlinewidth Set up the line width.

newpath
 72 500 moveto 378 500 lineto
[30] centerdash stroke

Center a very simple dash pattern in which the unfilled
dashes have the same length as the filled ones.

newpath
 72 400 moveto 378 400 lineto
[30 50] centerdash stroke

Center a pattern which is similar to the above example
except that the unfilled dashes are longer than the filled
ones.

newpath
 72 300 moveto 378 300 lineto
[30 10 5 10] centerdash stroke

Center a dot-dash pattern.

newpath
 72 200 moveto 378 200 lineto
[30 15 10] centerdash stroke

Center an asymmetric pattern.

newpath
 225 390 300 240 300 arc
[40 10] centerdash stroke

Center a dash pattern on an arbitrary continuous path, in
this case an arc.

showpage

1 inch
72 points

151

Program 6 / Printing Images

This program demonstrates the use of the image
operator. It also shows a useful technique for reading the
data for the image from the current file. An important
general procedure, ‘‘concatprocs,’’ is defined and used
in redefining the transfer function.

/concatprocs
 { /proc2 exch cvlit def
 /proc1 exch cvlit def

‘‘concatprocs’’ takes two procedure bodies as
arguments and concatenates them into one procedure
body. The resulting procedure body is left on the
operand stack. ‘‘concatprocs’’ will be used in
constructing a new transfer function below.

 /newproc proc1 length proc2 length add
 array def

Create a new array large enough to accommodate both
procedures.

 newproc 0 proc1 putinterval Place the 1st procedure at the beginning of the new one.
 newproc proc1 length proc2 putinterval Place the second procedure at the end of the new one.
 newproc cvx Now make this array into an executable object.
 } def

/inch { 72 mul } def
/picstr 3 string def String used in reading hexadecimal strings below (each

row is 3 bytes long).

/imageturkey
 { 24 23 1 [24 0 0 -23 0 23]
 { currentfile picstr readhexstring pop }
 image
 } def

The procedure ‘‘imageturkey’’ reads the image (as
hexadecimal strings) from this file and prints it on the
page. The image of the turkey is represented as one bit
per sample. It is 24 samples wide by 23 samples high
and its first sample is in the upper left corner of the
source image.

The image we generate is mapped to the unit square in
user space. This unit square has its lower left corner at
the origin and extends 1 unit in the positive x and y
directions. Translate the user space origin to center the
image on the page. Then scale the coordinate system to
get a larger unit square.

gsave Isolate the effects of the settransfer.
 3 inch 4 inch translate Position the unit square on the page.
 2 inch dup scale Scale it to be 2 inches square.

1 inch
72 points

153

Program 6 / Printing Images
(continued)

 {1 exch sub} currenttransfer concatprocs
 settransfer

Since the source samples for our image specify a reverse
image (that is, the samples that correspond to ‘‘black’’
are specified as 1’s rather than 0’s) we specify a transfer
function to reverse this effect. Since some output
devices have complex transfer functions we don’t
simply want to set the transfer function. Instead we want
to concatenate our new transfer function with the
existing one to achieve our results.

 imageturkey
 003B00 002700 002480 0E4940
 114920 14B220 3CB650 75FE88
 17FF8C 175F14 1C07E2 3803C4
 703182 F8EDFC B2BBC2 BB6F84
 31BFC2 18EA3C 0E3E00 07FC00
 03F800 1E1800 1FF800

As soon as ‘‘imageturkey’’ is executed, the currentfile
... readhexstring sequence will begin reading bytes
from this file. The safest way to synchronize reading
from the program file with the POSTSCRIPT interpreter’s
own reading of this file is to embed the reading
commands in a procedure, then place that procedure
name followed by a ‘‘carriage return’’ followed by the
bytes to be read in the file. In the hexadecimal string
specified here, each series of 6 hexadecimal numbers
represents a row of bits in the turkey bitmap. Each
hexadecimal character represents a pattern of four 0’s or
1’s where 0’s are black and 1’s are white. Notice that
this image is specified as a ‘‘reverse’’ image since the
turkey is white and the background is black.

grestore
showpage

The image command reads exactly the number of bytes
we supplied, and the interpreter picks up its reading
here.

PROGRAMS 7–11

PRINTING TEXT

The programs in this section contain procedures that are very
useful in typesetting. They also provide guidelines for
sophisticated typography. The fonts available through the
POSTSCRIPT language give us a great deal of flexibility since
they can be arbitrarily scaled and rotated. Without this
flexibility, most of these programs could not be written. Most of
the programs in this section are fairly short and simple since the
POSTSCRIPT language has an extensive set of operators for
manipulating fonts and printing text.

ABOUT THE PROGRAMS

The program ‘‘Printing with Small Caps’’ defines a general pro-
cedure called ‘‘scshow’’ for printing a string of capital letters as
small caps in the current font. In traditional typography, small
caps are capital letters that have been designed to match the x-
height of a particular typeface; they are smaller in height than
regular capital letters. The ‘‘scshow’’ procedure generates small
caps of the proper proportions to coordinate with the current
font. In order to get the proper proportions, the font must be
scaled anamorphically; this is accomplished using the makefont
operator.

‘‘Printing with Small Caps’’ also illustrates an important tech-
nique for computing the bounding box of a character. Since the
proportions used for the size of the small caps are derived from a
ratio of the cap height to the x-height of the font, these two quan-

155

tities must be determined. By finding the bounding box of the
capital X and the lowercase x, we can determine the cap height
and x-height respectively.

‘‘Setting Fractions’’ defines a general procedure called
‘‘fractionshow’’ that prints a fraction in the current font given
the numerator and denominator of the fraction. The numerals
used to print the numerator and denominator are smaller in size
than the standard numerals in a font. Once again the makefont
operator is used to scale the current font anamorphically to get
the proper proportions.

‘‘Vertical Text’’ defines a general procedure, ‘‘vshow,’’ for
printing a string vertically on the page. Such a procedure is use-
ful in labeling graphs and illustrations. The output of the
program demonstrates that text printed vertically tends to look
better when the text consists of capital letters only.

‘‘Circular Text’’ defines two procedures for printing text along a
circular arc. The flexibility of the POSTSCRIPT fonts makes this
example possible since characters can be printed at any arbitrary
angle of rotation.

‘‘Placing Text Along an Arbitrary Path’’ carries the circular text
idea one step further and defines a procedure to print text along a
path of arbitrary shape.

156 PRINTING TEXT

157

1 inch
72 points

To read means to obtain meaning from words, and
legibility is THAT QUALITY WHICH enables words
to be read easily, quickly, and accurately.

JOHN C. TARR

159

Program 7 / Printing with Small Caps

This program defines a general procedure for printing
with small caps.

/scdict 3 dict def Local storage for the procedure ‘‘scshow.’’
/scshow
 { scdict begin

‘‘scshow’’ takes one argument, a string, and shows it as
small caps for the current font. It makes the assumption
that the characters in the string are upper case letters
(i.e., it does not convert characters from lower case to
upper case).

 gsave Save the current graphics state so that changes made to
the current font are localized to this procedure.

 currentfont [.9 0 0 findscscale 0 0] makefont
 setfont

Scale the current font by 90 percent in the x-direction
and to the proper size in the y-direction (see the
‘‘findscale’’ procedure below).

 show Show the string.
 currentpoint
 grestore
 moveto
 end
 } def

Upon exiting this procedure, we would like the current
point to be just after the last small cap character shown
so that ‘‘scshow’’ behaves like the show operator.
Unfortunately performing the grestore will return us to
our position on the page before the small cap string was
shown. To avoid this side-effect, push the current point
onto the operand stack before performing the grestore
operation and then move to that point before exiting the
procedure.

scdict begin
 /findscscale
 { gsave
 newpath
 0 0 moveto
 (X) true charpath
 flattenpath
 pathbbox /capheight exch def pop pop pop
 newpath
 0 0 moveto
 (x) true charpath
 flattenpath
 pathbbox /xheight exch def pop pop pop
 grestore

‘‘findscscale’’ determines the correct scale factor for
deriving small caps to coordinate with the current font.
The height of the small caps should be the x-height (i.e.,
the height of a lower case x) plus one third of the
difference between the x-height and the cap height. The
cap height and x-height are found using the following
method: Create a new path and set the current point to
be the origin. Then execute the charpath operator to
add a description of the character to the current path.
The flattenpath operator replaces any curveto
segments in the path with sequences of straight lines so
that the pathbbox operator will return a bounding box
that fits the path as closely as possible (otherwise the
control points for the curves are included in the
bounding box computation and these almost always lie
off of the path outline).

 xheight capheight xheight sub 3 div add
 capheight div

Leave the scale factor on the operand stack.

 } def
end

1 inch
72 points

To read means to obtain meaning from words, and
legibility is THAT QUALITY WHICH enables words
to be read easily, quickly, and accurately.

JOHN C. TARR

161

Program 7 / Printing with Small Caps
(continued)

/Times-Roman findfont 18 scalefont setfont

72 500 moveto
(To read means to obtain meaning from) show
(words, and) show

72 500 20 sub moveto
(legibility is) show
(THAT QUALITY WHICH) scshow
(enables words) show

72 500 20 2 mul sub moveto
(to be read easily, quickly, and accurately.) show

72 500 70 sub moveto
(JOHN C. TARR) scshow

The following is an example of using small caps in a
paragraph of text. When setting words in capital letters,
the results are most aesthetically pleasing when small
caps are used.

showpage

1 inch
72 points

7⁄8

Slowly stir in 51⁄2 lbs. of chocolate and then blend on high.

13⁄22

3⁄4

163

Program 8 / Setting Fractions

This program defines a general procedure for printing
fractional quantities.

/fractiondict 5 dict def Local storage for the procedure ‘‘fractionshow.’’
/fractionshow
 { fractiondict begin
 /denominator exch def
 /numerator exch def

‘‘fractionshow’’ takes two arguments: a string for the
numerator and a string for the denominator.

 /regularfont currentfont def Remember the current, unchanged font.
 /fractionfont currentfont [.65 0 0 .6 0 0]
 makefont def

Create a new font for printing the numerator and
denominator. Scaling the original font by 65 percent in
the x direction and 60 percent in the y direction yields
the best results.

 gsave
 newpath
 0 0 moveto
 (1) true charpath
 flattenpath pathbbox
 /height exch def pop pop pop
 grestore

The numerator should be top-aligned with the numeral
height (usually the height of the numeral one). In order
to position the numerator, the height of the numeral one
in the current font must be computed. The method used
is to create a new path and set the current point to be the
origin. Then execute the charpath operator to add a
description of the character to the current path. The
flattenpath operator replaces any curveto segments in
the path with sequences of straight lines so that the
pathbbox operator will return a bounding box that fits
the path as closely as possible (otherwise the control
points for the curves are included in the bounding box
computation and these almost always lie off of the path
outline).

 0 .4 height mul rmoveto The numerator is positioned at 40 percent of the height
of the numeral one so that it aligns with the numeral
height (since it has been scaled by 60 percent).

 fractionfont setfont numerator show Print the numerator string.
 0 .4 height mul neg rmoveto Move back down to the baseline.
 regularfont setfont (\244) show Print the fraction bar (octal code 244) in the full-size

font. The fraction bar character has been designed with
negative sidebearings such that it naturally gets
positioned properly with respect to the scaled down
numbers.

 fractionfont setfont denominator show Print the denominator string.
 regularfont setfont Return to the original font.
 end
 } def

1 inch
72 points

7⁄8

Slowly stir in 51⁄2 lbs. of chocolate and then blend on high.

13⁄22

3⁄4

165

Program 8 / Setting Fractions
(continued)

/Times-Roman findfont 300 scalefont setfont
100 72 moveto
(7) (8) fractionshow

Print a large fraction near the bottom of the page.

/Times-Roman findfont 18 scalefont setfont
72 550 moveto
(Slowly stir in 5) show
(1) (2) fractionshow
(lbs. of chocolate and then blend on high.) show

Demonstrate a fraction intermingled with text.

/Times-Roman findfont 40 scalefont setfont
420 650 moveto
(13) (22) fractionshow
100 450 moveto
(3) (4) fractionshow

Show a smaller fraction composed of two digit numbers.

showpage

1 inch
72 points

T
E
X
T

P
O
S
I
T
I
O
N
E
D

V
E
R
T
I
C
A
L
L
Y

S
H
O
U
L
D

B
E

C
E
N
T
E
R
E
D

O
N

A

C
O
M
M
O
N

C
E
N
T
E
R

L
I
N
E
.

V
E
R
T
I
C
A
L

T
E
X
T

I
N

C
A
P
I
T
A
L

L
E
T
T
E
R
S

H
A
S

M
O
R
E

E
V
E
N

s
p
a
c
i
n
g

t
h
a
n

l
o
w
e
r

c
a
s
e

l
e
t
t
e
r
s
.

167

Program 9 / Vertical Text

This program defines a general procedure for printing
text vertically (with respect to the user coordinate
system).

/vshowdict 4 dict def Local storage for the procedure ‘‘vshow.’’

/vshow
 { vshowdict begin
 /thestring exch def
 /lineskip exch def

‘‘vshow’’ will display text vertically, centering it on a
common center line. ‘‘vshow’’ takes two arguments, the
lineskip between letters and the string to be shown.

 thestring
 {

The forall operator allows us to repeat the same
procedure for each character in the string.

 /charcode exch def forall pushes the character code onto the operand stack.
 /thechar () dup 0 charcode put def Convert the character code to a one-character string.

 0 lineskip neg rmoveto Move down by the lineskip amount.
 gsave
 thechar stringwidth pop 2 div neg 0 rmoveto Move left by half of the character width.
 thechar show Display the character.
 grestore
 } forall
 end
 } def

/Helvetica findfont 16 scalefont setfont Set up the font we wish to use.

72 576 moveto
16 (TEXT POSITIONED VERTICALLY) vshow
122 576 moveto

The first vertical line of text will be centered around the
line x = 72 and will begin just below the line y = 576.

16 (SHOULD BE CENTERED ON) vshow
172 576 moveto
16 (A COMMON CENTER LINE.) vshow
222 576 moveto
16 (VERTICAL TEXT IN CAPITAL) vshow
272 576 moveto
16 (LETTERS HAS MORE EVEN) vshow
322 576 moveto
16 (spacing than lower case letters.) vshow

showpage

1 inch
72 points

Sy
m

ph
on

y No. 9 (The Choral Sym
phony)

Ludwig von Beethoven

The New York Philharmonic Orch

es
tra

169

Program 10 / Circular Text

This program defines two different procedures for
printing text around a circular arc. ‘‘outsidecircletext’’
prints the text in a clockwise fashion with its baseline
along the circumference, on the outside of the circle.
‘‘insidecircletext’’ prints the text in a counter-clockwise
fashion with its baseline along the circumference, on the
inside of the circle.

/outsidecircletext
 { circtextdict begin
 /radius exch def
 /centerangle exch def
 /ptsize exch def
 /str exch def

 ‘‘outsidecircletext’’ takes four arguments: the string to
show, the point size of the font to use, the angle around
which the text should be centered, and the radius of the
circular arc. It assumes that the center of the circle is at
(0,0).

 /xradius radius ptsize 4 div add def A radius slightly larger than the one specified is used for
computations but not for placement of characters. This
has the effect of placing the characters closer together,
otherwise the interletter spacing would be too loose.

 gsave Save the current graphics state.
 centerangle str findhalfangle add rotate Find out how much angle the text subtends and then

rotate to the appropriate starting position for showing
the string. (The positive x-axis now intersects the circle
where the text should start.)

 str
 { /charcode exch def
 () dup 0 charcode put outsideplacechar
 } forall

For each character in the string, determine its position
on the circular arc and show it.

 grestore Return to the former graphics state.
 end
 } def

/insidecircletext
 { circtextdict begin
 /radius exch def /centerangle exch def
 /ptsize exch def /str exch def

 ‘‘insidecircletext’’ takes the same four arguments as
‘‘outsidecircletext.’’

 /xradius radius ptsize 3 div sub def
 gsave
 centerangle str findhalfangle sub rotate
 str
 { /charcode exch def
 () dup 0 charcode put insideplacechar
 } forall
 grestore
 end

Here we use a radius which is slightly smaller than the
desired radius for computations. This forces the
characters to be placed farther apart to avoid
overlapping.

 } def

170

Program 10 / Circular Text
(continued)

/circtextdict 16 dict def
circtextdict begin
 /findhalfangle
 { stringwidth pop 2 div
 2 xradius mul pi mul div 360 mul
 } def

‘‘findhalfangle’’ takes one argument, a string, and finds
the angle subtended by that string. It leaves the value of
half of that angle on the stack. The angle is found by
computing the ratio of the width of the string to the
circumference of the circle and then converting that
value to degrees.

 /outsideplacechar
 { /char exch def
 /halfangle char findhalfangle def
 gsave

‘‘outsideplacechar’’ shows a character upright on the
outside of the circumference and then rotates clockwise
by the amount of angle subtended by the width of the
character.

 halfangle neg rotate
 radius 0 translate

Rotate clockwise by half the angle taken up by the width
of the character and translate out to the circumference.

 -90 rotate Position character upright on outside of circumference.
 char stringwidth pop 2 div neg 0 moveto Center the character around the origin.
 char show
 grestore
 halfangle 2 mul neg rotate
 } def

Rotate clockwise by the amount of angle subtended by
the width of the character.

 /insideplacechar
 { /char exch def
 /halfangle char findhalfangle def
 gsave
 halfangle rotate
 radius 0 translate
 90 rotate

‘‘insideplacechar’’ operates in a similar manner to
‘‘outsideplacechar’’ except that the direction of rotation
is counter-clockwise and the characters are placed
upright on the inside of the circle.

 char stringwidth pop 2 div neg 0 moveto
 char show
 grestore
 halfangle 2 mul rotate
 } def

 /pi 3.1415923 def
end

171

Program 10 / Circular Text
(continued)

/Times-Bold findfont 22 scalefont setfont The remainder of this program demonstrates how to use
the circular text procedures to draw a record label.

306 448 translate translate the origin to the center of the page.

(Symphony No. 9 (The Choral Symphony))
 22 90 140 outsidecircletext

Put the title of the record along the ‘‘outside’’ of the
circle.

/Times-Roman findfont 15 scalefont setfont

(Ludwig von Beethoven)
 15 90 118 outsidecircletext

Put the composer’s name along the ‘‘outside’’ of a
slightly smaller circle.

(The New York Philharmonic Orchestra)
 15 270 118 insidecircletext

Put the name of the orchestra along the ‘‘inside’’ of the
circle so that it reads right-side-up.

showpage

1 inch
72 points

If m
y film makes one m

ore p erson feel miserable I’ll feel I’ve don
e

m
y

jo
b.

 --
 W

OODY ALLEN

173

Program 11 / Placing Text Along an Arbitrary Path

This program defines a general procedure called
‘‘pathtext’’ for placing text along a path of arbitrary
shape.

/pathtextdict 26 dict def Local storage for the procedure ‘‘pathtext.’’

/pathtext
 { pathtextdict begin
 /offset exch def
 /str exch def

‘‘pathtext’’ will place a string of text along any path. It
takes a string and starting offset distance from the
beginning of the path as its arguments. Note that
‘‘pathtext’’ assumes that a path has already been defined
and after it places the text along the path, it clears the
current path in the same manner as the stroke and fill
operators; it also assumes that a font has been set.
‘‘pathtext’’ begins placing the characters along the
current path, starting at the offset distance and
continuing until either the path length is exhausted or
the entire string has been printed, whichever occurs first.
The results will be more effective when a small point
size font is used along a path with sharp curves.

 /pathdist 0 def Initialize the distance traveled along the path.
 /setdist offset def Initialize the distance covered by setting characters.
 /charcount 0 def Initialize the character count.
 gsave
 flattenpath Reduce the path to a series of straight line segments.

The characters will be placed along the line segments in
the procedure ‘‘linetoproc.’’

 {movetoproc} {linetoproc}
 {curvetoproc} {closepathproc}
 pathforall

The basic strategy is to process the segments of the path,
keeping a running total of the distance traveled so far
(pathdist). We also keep track of the distance taken up
by the characters that have been set so far (setdist).
When the distance traveled along the path is greater than
the distance taken up by the set characters, we are ready
to set the next character (if there are any left to be set).
This process continues until we have exhausted the full
length of the path.

 grestore
 newpath Clear the current path.
 end
 } def

174

Program 11 / Placing Text Along an Arbitrary Path
(continued)

pathtextdict begin
/movetoproc
 { /newy exch def /newx exch def

‘‘movetoproc’’ is executed when a moveto component
has been encountered in the pathforall operation.

 /firstx newx def /firsty newy def
 /ovr 0 def
 newx newy transform

Remember the ‘‘first point’’ in the path so that when we
get a closepath component we can properly handle the
text.

 /cpy exch def /cpx exch def
 } def

Explicitly keep track of the current position in device
space.

/linetoproc ‘‘linetoproc’’ is executed when a lineto component has
been encountered in the pathforall operation.

 { /oldx newx def /oldy newy def Update the old point.
 /newy exch def /newx exch def Get the new point.
 /dx newx oldx sub def
 /dy newy oldy sub def
 /dist dx dup mul dy dup mul add sqrt def Compute the distance between the old and new point.
 dist 0 ne Don’t do anything if the line segment has zero length.
 { /dsx dx dist div ovr mul def
 /dsy dy dist div ovr mul def

‘‘dsx’’ and ‘‘dsy’’ are used to update the current
position to be just beyond the width of the previous
character.

 oldx dsx add oldy dsy add transform
 /cpy exch def /cpx exch def Update the current position.
 /pathdist pathdist dist add def Increment the distance we have traveled along the path.
 { setdist pathdist le Keep setting characters along this path segment until we

have exhausted its length.
 { charcount str length lt
 {setchar} {exit} ifelse }

As long as there are still characters left in the string, set
them.

 { /ovr setdist pathdist sub def
 exit }
 ifelse
 } loop

Keep track of how much we have overshot the path
segment by setting the previous character. This enables
us to position the origin of the following characters
properly on the path.

 } if
 } def

/curvetoproc
 { (ERROR: No curveto’s after flattenpath!) print
 } def

‘‘curvetoproc’’ is executed when a curveto component
has been encountered in the pathforall operation. It
prints an error message since there shouldn’t be any
curveto’s in a path after the flattenpath operator has
been executed.

/closepathproc
 { firstx firsty linetoproc
 firstx firsty movetoproc
 } def

‘‘closepathproc’’ is executed when a closepath
component has been encountered in the pathforall
operation. It simulates the action of the operator
closepath by executing ‘‘linetoproc’’ with the
coordinates of the most recent moveto and then
executing ‘‘movetoproc’’ to the same point.

175

Program 11 / Placing Text Along an Arbitrary Path
(continued)

/setchar
 { /char str charcount 1 getinterval def

‘‘setchar’’ sets the next character in the string along the
path and then updates the amount of path we have
exhausted.

 /charcount charcount 1 add def Increment the character count.
 /charwidth char stringwidth pop def Find the width of the character.
 gsave
 cpx cpy itransform translate Translate to the current position in user space.
 dy dx atan rotate Rotate the x-axis to coincide with the current segment.
 0 0 moveto char show
 currentpoint transform
 /cpy exch def /cpx exch def
 grestore

Update the current position before restoring to the
untransformed state.

 /setdist setdist charwidth add def
 } def

Increment the distance we have covered by setting
characters.

end The completes the definitions required by ‘‘pathtext.’’

Below is an example of using ‘‘pathtext.’’
/Helvetica findfont 16 scalefont setfont Set up the font we wish to use.

newpath
 200 500 70 0 270 arc
 200 110 add 500 70 270 180 arc

Define the path that ‘‘pathtext’’ will use.

(If my film makes one more person feel\
 miserable I’ll feel I’ve done my job.\
 -- WOODY ALLEN) 55 pathtext Print the string along the path at an offset of 55 points.

newpath Draw an outline shape suggestive of a movie camera.
 150 310 moveto 360 310 lineto Draw the box part.
 360 400 lineto 150 400 lineto
 closepath
 360 347 moveto 410 330 lineto Draw the lens part.
 410 380 lineto 360 363 lineto
2 setlinewidth stroke

EXERCISE FOR THE READER: This algorithm places
characters along the path according to the origin of each
character. Rewrite the algorithm so that the characters
are placed according to the center of their width. This
will yield better results around sharp curves and when
larger point sizes are used.

showpage

A Simple Line Breaking Algorithm

In every period there have been better or
worse types employed in better or worse
ways. The better types employed in better
ways have been used by the educated printer
acquainted with standards and history,
directed by taste and a sense of the fitness of
things, and facing the industrial conditions and
the needs of his time. Such men have made of
printing an art. The poorer types and methods
have been employed by printers ignorant of
standards and caring alone for commercial
success. To these, printing has been simply a
trade. The typography of a nation has been
good or bad as one or other of these classes
had the supremacy. And to-day any intelligent
printer can educate his taste, so to choose
types for his work and so to use them, that he
will help printing to be an art rather than a
trade. –Daniel Berkeley Updike.

Drawing a Pie Chart

January Pie Sales

Blueberry

Cherry

Apple

Boston Cream

Other

Vanilla Cream

Filling an Area with a Pattern

Basket weave, no rotation in user space Fish scale, 90 degree rotation in user space

Making a Poster

50%

SA
% OF

AL
OFF

LE

NOTE: This is not the actual output page produced by the following POSTSCRIPT program. The
rectangles are scaled down versions of the 8 1/2" by 11" pages generated by the program.

PROGRAMS 12–15

APPLICATIONS

This section is a collection of miscellaneous programs that serve
as examples of some mini-applications written entirely in the
POSTSCRIPT language.

ABOUT THE PROGRAMS

The program ‘‘A Simple Line Breaking Algorithm’’ is exactly
what its title might suggest: a simple algorithm for breaking text
across several lines. The program takes a string and prints it in a
specified column on the page making line breaks when neces-
sary. The program makes use of the stringwidth operator to
determine how long a word will be when printed in the current
font, and it makes use of the search operator to find the word
breaks in the string. The line breaking algorithm could be part of
a larger program for document formatting.

‘‘Making a Poster’’ is useful for printing a picture that is larger
than the usual 8-1/2" by 11" page size. The program defines a
procedure ‘‘printposter’’ that will take the large picture and print
it on several pieces of 8-1/2" by 11" paper.

The program ‘‘Drawing a Pie Chart’’ defines a set of procedures
that can be used to draw any pie chart. It is a good example of
integrating text and graphics under different graphical transfor-
mations.

‘‘Filling an Area with a Pattern’’ demonstrates one technique for
doing pattern-fill by changing the halftone screen and then using

177

the fill operator. This is a rather advanced example and it re-
quires an understanding of the specifics of the underlying print-
ing device, such as its resolution and orientation with respect to
the user coordinate system. The program contains an important
procedure, ‘‘setuserscreen,’’ that is used for setting up a halftone
screen in a device independent manner. The POSTSCRIPT

halftone screen machinery is very device dependent and the pro-
cedure ‘‘setuserscreen’’ serves as a device independent interface
to it.

178 APPLICATIONS

179

1 inch
72 points

In every period there have been better or
worse types employed in better or worse
ways. The better types employed in better
ways have been used by the educated printer
acquainted with standards and history,
directed by taste and a sense of the fitness of
things, and facing the industrial conditions and
the needs of his time. Such men have made of
printing an art. The poorer types and methods
have been employed by printers ignorant of
standards and caring alone for commercial
success. To these, printing has been simply a
trade. The typography of a nation has been
good or bad as one or other of these classes
had the supremacy. And to-day any intelligent
printer can educate his taste, so to choose
types for his work and so to use them, that he
will help printing to be an art rather than a
trade. –Daniel Berkeley Updike.

181

Program 12 / A Simple Line Breaking Algorithm

This program demonstrates a simple line breaking
algorithm.

/wordbreak () def Constant used for word breaks (ASCII space).
/BreakIntoLines
 { /proc exch def
 /linewidth exch def
 /textstring exch def

‘‘BreakIntoLines’’ takes a string of text and breaks it up
into a series of lines, each no longer than the maximum
line width. The algorithm breaks lines at word breaks
(spaces) only. ‘‘BreakIntoLines’’ takes three arguments:
the string of text, the maximum line width and a
procedure to be executed each time the end of a line has
been found. The procedure is expected to take one
argument: a string containing the current line.

 /breakwidth wordbreak stringwidth pop def Get the width of a word break in the current font.
 /curwidth 0 def ‘‘curwidth’’ is the typeset width of the current line.
 /lastwordbreak 0 def ‘‘lastwordbreak’’ is the index of the most recent word

break encountered in the string of text.
 /startchar 0 def ‘‘startchar’’ is the index of the first character on the

current line.
 /restoftext textstring def ‘‘restoftext’’ is a temporary variable that holds the

remaining results of the search operator (see the loop
below).

 { restoftext wordbreak search
 {/nextword exch def pop
 /restoftext exch def
 /wordwidth nextword stringwidth pop def

The basic strategy for breaking lines is to search the
string of text (contained in ‘‘restoftext’’) for the next
word break. The pre-string returned by the search
operator is the word preceding the word break. The
post-string returned gets assigned to ‘‘restoftext.’’

 curwidth wordwidth add linewidth gt
 { textstring startchar
 lastwordbreak startchar sub
 getinterval proc
 /startchar lastwordbreak def
 /curwidth wordwidth breakwidth add def }
 { /curwidth curwidth wordwidth add
 breakwidth add def
 } ifelse

If the width of the word returned by the search
operator would force the current line to exceed the
maximum line width then the substring spanning the
current line (from the first character on the line to the
most recent word break) is passed as an argument to the
user’s procedure. Otherwise the width of the current line
is incremented by the width of the word.

 /lastwordbreak lastwordbreak
 nextword length add 1 add def
 }

The ‘‘lastwordbreak’’ variable is updated to index into
the text string at the position of the most recent word
break.

 { pop exit }
 ifelse
 } loop

The last word in the text has been found when the
search operator fails to match the word break pattern;
this terminates the loop.

 /lastchar textstring length def
 textstring startchar lastchar startchar sub Don’t forget to process the last line.
 getinterval proc
 } def

1 inch
72 points

In every period there have been better or
worse types employed in better or worse
ways. The better types employed in better
ways have been used by the educated printer
acquainted with standards and history,
directed by taste and a sense of the fitness of
things, and facing the industrial conditions and
the needs of his time. Such men have made of
printing an art. The poorer types and methods
have been employed by printers ignorant of
standards and caring alone for commercial
success. To these, printing has been simply a
trade. The typography of a nation has been
good or bad as one or other of these classes
had the supremacy. And to-day any intelligent
printer can educate his taste, so to choose
types for his work and so to use them, that he
will help printing to be an art rather than a
trade. –Daniel Berkeley Updike.

183

Program 12 / A Simple Line Breaking Algorithm
(continued)

/Times-Roman findfont 16 scalefont setfont Below is an example of the how the ‘‘BreakIntoLines’’
procedure might be used.

/yline 650 def ‘‘yline’’ is a variable used in the procedure provided to
‘‘BreakIntoLines’’ below.

(In every period there have been better or worse\
 types employed in better or worse ways. The\
 better types employed in better ways have been\
 used by the educated printer acquainted with\
 standards and history, directed by taste and\
 a sense of the fitness of things, and facing the\
 industrial conditions and the needs of his time.\
 Such men have made of printing an art. The\
 poorer types and methods have been employed\
 by printers ignorant of standards and caring\
 alone for commercial success. To these, printing\
 has been simply a trade. The typography of a\
 nation has been good or bad as one or other of\
 these classes had the supremacy. And to-day\
 any intelligent printer can educate his taste, so\
 to choose types for his work and so to use them,\
 that he will help printing to be an art rather\
 than a trade. \261Daniel Berkeley Updike.)
 300 Use a line width of 300 points.
 { 72 yline moveto show
 /yline yline 18 sub def}

The procedure provided to ‘‘BreakIntoLines’’ takes a
string as its argument. It uses a global variable ‘‘yline’’
to keep track of vertical positioning on the page. It
moves to a specified position on the page, shows the
string in the current font and then updates the vertical
position.

 BreakIntoLines EXERCISE FOR THE READER: If the user specifies a
short enough line width, it is possible for the typeset
width of a single word to exceed the maximum line
width. Modify this algorithm to handle this event
gracefully.

showpage

50%

SA
% O

AL
FF

LE

NOTE: This is not the actual output page produced by the following POSTSCRIPT program. The
rectangles are scaled down versions of the 8 1/2" by 11" pages generated by the program.

185

Program 13 / Making a Poster

This program demonstrates how to print a picture larger
than a sheet of paper (8.5" by 11") on several sheets of
paper that can be pasted together later.

/printposter
 { /rows exch def
 /columns exch def
 /bigpictureproc exch def

‘‘printposter’’ takes a large picture (larger than 8.5" by
11") and prints it on several pages according to the
number of rows and columns specified. Imagine
superimposing a grid composed of the specified number
of rows and columns on the large image. Then each
rectangle in the grid represents an 8.5" by 11" page to be
printed. ‘‘printposter’’ takes three arguments: a
procedure representing the large picture, the number of
columns and the number of rows.

 newpath
 leftmargin botmargin moveto
 0 pageheight rlineto
 pagewidth 0 rlineto
 0 pageheight neg rlineto
 closepath clip

Set up a clipping region for the page we will print on.
Since most printers cannot print to the very edge of the
paper, we will explicitly set up the clipping boundary so
that it lies within the printing boundaries of the printer
and we will compensate for this when we print the large
image so that all parts of the image are actually printed.

 leftmargin botmargin translate Readjust the origin on the page so that it coincides with
the origin of the clipping boundary.

 0 1 rows 1 sub For each row of pages...
 { /rowcount exch def
 0 1 columns 1 sub For each page within that row...
 { /colcount exch def
 gsave
 pagewidth colcount mul neg
 pageheight rowcount mul neg
 translate

Translate the large picture so that the desired section
will be imaged on the printed page. We must translate
the large picture in the negative direction so that the
lower left corner of the section to be printed always
coincides with the origin.

 bigpictureproc Execute the large picture, clipping to this page.
 gsave showpage grestore Since the showpage operator has the side effect of

executing the initgraphics operator (which would reset
the clipping region), we bracket it by the gsave and
grestore operators.

 grestore
 } for
 } for
 } def

50%

SA
% O

AL
FF

LE

NOTE: This is not the actual output page produced by the following POSTSCRIPT program. The
rectangles are scaled down versions of the 8 1/2" by 11" pages generated by the program.

187

Program 13 / Making a Poster
(continued)

/inch {72 mul} def

/leftmargin .5 inch def
/botmargin .25 inch def
/pagewidth 7.5 inch def
/pageheight 10 inch def

These are the dimensions of the clipping boundary.

/salesign
 { gsave

This procedure draws a large sign with a border. The
sign is 22.5 inches wide and 19.5 inches high which fits
comfortably on 6 8.5 inch by 11 inch pages (the final
result will be 2 rows of pages high and 3 columns of
pages wide).

 /Times-Roman findfont 500 scalefont setfont
 2.5 inch 11 inch moveto
 (SALE) show
 /Times-Roman findfont 350 scalefont setfont
 1.45 inch 4 inch moveto
 .5 setgray (50%) show
 0 setgray (OFF) show
 newpath Specify the path for the border.
 .5 inch 18 inch moveto
 22 inch 18 inch lineto
 22 inch 2 inch lineto
 .5 inch 2 inch lineto
 closepath
 gsave
 .75 inch setlinewidth stroke First paint the border with a thick black stroke.
 grestore
 10 setlinewidth 1 setgray stroke Then paint a thin white stroke down the center of the

border.
 grestore
 } def

{salesign} 3 2 printposter Print the large picture on a total of 6 pages. The image is
three columns of pages wide and 2 rows of pages high.

1 inch
72 points

January Pie Sales

Blueberry

Cherry

Apple

Boston Cream

Other

Vanilla Cream

189

Program 14 / Drawing a Pie Chart

This program demonstrates a small application: drawing
a pie chart.

/PieDict 24 dict def
PieDict begin

Local storage for ‘‘DrawPieChart’’ and its related
procedures.

 /DrawSlice
 { /grayshade exch def
 /endangle exch def
 /startangle exch def
 /thelabel exch def

‘‘DrawSlice’’ draws an outlined and filled-in pie slice.
It takes four operands: the label for this particular pie
slice, the starting angle for the slice, the ending angle for
the slice and the shade of gray the slice should be.

 newpath 0 0 moveto Create a path in the shape of a pie slice.
 0 0 radius startangle endangle arc
 closepath
 1.415 setmiterlimit This prevents a spike from occurring on the interior

angles when we outline the pie slices. The value 1.415
cuts off miters at angles below 90 degrees.

 gsave
 grayshade setgray
 fill
 grestore
 stroke

Fill the pie slice path with the appropriate gray color. By
using gsave and grestore we don’t lose the current
path. Since color is painted onto the page, we fill the pie
slice first and then outline it with a stroke.

 gsave The following draws the tick-mark and places the label:
 startangle endangle add 2 div rotate Find the center of the pie slice and rotate so that the

x-axis coincides with this center.
 radius 0 translate Translate the origin out to the circumference.
 newpath
 0 0 moveto labelps .8 mul 0 lineto stroke

Draw the tick-mark; make it 80 percent of the label
point size in length.

 labelps 0 translate Move the origin out a little beyond the circumference.
 0 0 transform
 grestore
 itransform
 /y exch def /x exch def
 x y moveto

 x 0 lt
 { thelabel stringwidth pop neg 0 rmoveto }
 if

Place the label at the current origin. If we simply draw
the text on the page now, it would come out rotated.
Since this is not desired, we avoid it by returning to the
previous unrotated coordinate system. Before returning,
we remember the position of the current origin on the
printed page. We accomplish this by using the
transform and itransform operators. First perform a
transform on the origin to push the coordinates of the
origin in device space onto the operand stack. Then
perform a grestore to return to the previous unrotated
coordinate system. Then perform an itransform on the
two device coordinates left on the stack to determine
where they are in the current coordinate system.

 y 0 lt { 0 labelps neg rmoveto } if
 thelabel show
 } def

Make some adjustments so that the label text won’t
collide with the pie slice.

190

Program 14 / Drawing a Pie Chart
(continued)

 /findgray
 { /i exch def /n exch def
 i 2 mod 0 eq
 { i 2 div n 2 div round add n div }
 { i 1 add 2 div n div }
 ifelse
 } def
end

‘‘findgray’’ calculates the gray value for a slice. It takes
two arguments: the total number of slices and the
current slice number (Given that there are n pie slices,
the slices are ‘‘numbered’’ from 1 to n). The gray values
for the pie slices range evenly from white to black (i.e.,
the values provided to setgray range from (n/n, n-1/n,
..., 1/n)). Since we don’t want similar values of gray
next to each other, findgray ‘‘shuffles’’ the possible
combinations of gray like a deck of cards.

/DrawPieChart
 { PieDict begin
 /radius exch def
 /ycenter exch def /xcenter exch def
 /PieArray exch def
 /labelps exch def /titleps exch def
 /title exch def

‘‘DrawPieChart’’ takes seven arguments: the title of the
pie chart, the point size for the title, the point size for the
labels for each slice, a special array (described below
where ‘‘DrawPieChart’’ is called), the (x,y) center of
the pie chart, and the radius of the pie chart.

 gsave
 xcenter ycenter translate Translate the coordinate system origin to the center of

the pie chart.
 /Helvetica findfont titleps scalefont setfont Print the title of the pie chart in Helvetica.
 title stringwidth pop 2 div neg radius neg
 titleps 3 mul sub moveto
 title show

Center the title below the pie chart. Position it below the
bottom of the pie chart by 3 times the title point size.

 /Helvetica findfont labelps scalefont setfont Print the individual pie slice labels in Helvetica.
 /numslices PieArray length def
 /slicecnt 0 def
 /curangle 0 def A ‘‘loop’’ variable that keeps track of the angle of arc to

begin each pie slice at.
 PieArray Repeat the following for each element in the

‘‘PieArray.’’
 { /slicearray exch def
 slicearray aload pop Push the label and percentage onto the stack.
 /percent exch def
 /label exch def
 /perangle percent 360 mul def Convert the percentage into degrees of angle.
 /slicecnt slicecnt 1 add def
 label curangle curangle perangle add
 numslices slicecnt findgray DrawSlice
 /curangle curangle perangle add def Update the current starting angle.
 } forall
 grestore
 end
 } def

191

Program 14 / Drawing a Pie Chart
(continued)

(January Pie Sales) 24 12
 [[(Blueberry) .12]
 [(Cherry) .30]
 [(Apple) .26]
 [(Boston Cream) .16]
 [(Other) .04]
 [(Vanilla Cream) .12]
] 306 396 140 DrawPieChart

The pie array is an array of arrays. Each array in the pie
array contains the label for a pie slice followed by a real
number indicating the percentage of the total pie
represented by this particular slice.

showpage

1 inch
72 points

Basket weave, no rotation in user space Fish scale, 90 degree rotation in user space

193

Program 15 / Filling an Area with a Pattern

This program demonstrates how to fill an area with a
bitmap pattern using the POSTSCRIPT halftone screen
machinery. The setscreen operator is intended for
halftones and a reasonable default screen is provided by
each POSTSCRIPT implementation. It can also be used for
repeating patterns but the device dependent nature of the
setscreen operator can produce different results on
different printers. As a solution to this problem the
procedure, ‘‘setuserscreen,’’ is defined to provide a
device independent interface to the device dependent
setscreen operator.
IMPLEMENTATION NOTE: Creating low frequency
screens (below 60 lines per inch in device space) may
require a great deal of memory. On printing devices
with limited memory, a limitcheck error occurs when
storage is exceeded. To avoid this error, it is best to
minimize memory use by specifying a repeating pattern
that is a multiple of 16 bits wide (in the device
x-direction) and a screen angle of zero.

/setuserscreendict 22 dict def
setuserscreendict begin Local storage for the procedure ‘‘setuserscreen.’’
 /tempctm matrix def
 /temprot matrix def
 /tempscale matrix def

Temporary matrices used in computations in
‘‘setuserscreen.’’

 /concatprocs
 { /proc2 exch cvlit def
 /proc1 exch cvlit def
 /newproc proc1 length proc2 length add
 array def
 newproc 0 proc1 putinterval
 newproc proc1 length proc2 putinterval
 newproc cvx
 } def

‘‘concatprocs’’ takes two procedure bodies as
arguments and concatenates them into one procedure
body. The resulting procedure body is left on the
operand stack. ‘‘concatprocs’’ will be used in
constructing a new spot function below. This procedure
is identical to the one defined in the program ‘‘Printing
Images.’’

 /resmatrix matrix def
 /findresolution
 { 72 0 resmatrix defaultmatrix dtransform
 /yres exch def /xres exch def
 xres dup mul yres dup mul add sqrt
 } def
end

Temporary matrix used in ‘‘findresolution’’ below.
‘‘findresolution’’ returns the resolution (in pixels per
inch) of the device being printed on. Since there are 72
units per inch in the default user space, find out how
many pixels those 72 units require in device space by
transforming a 72 unit long vector into device space and
then taking the length of the result. Leave this length on
the operand stack.

194

Program 15 / Filling an Area with a Pattern
(continued)

/setuserscreen
 { setuserscreendict begin
 /spotfunction exch def
 /screenangle exch def
 /cellsize exch def

‘‘setuserscreen’’ takes 3 arguments: the cell size of the
halftone screen in the current user space units, the angle
of the screen relative to the current user space and a
procedure describing the spot function. ‘‘setuserscreen’’
converts the cell size and the screen angle from user
space into device space values for the built-in operator
setscreen.

 /m tempctm currentmatrix def Get the current transformation matrix.
 /rm screenangle temprot rotate def Create a rotation matrix using the screen angle.
 /sm cellsize dup tempscale scale def Create a scale matrix using the cell size.

 sm rm m m concatmatrix m concatmatrix pop Create a new transformation matrix by concatenating
sm*rm*m and store it in ‘‘m.’’

 1 0 m dtransform /y1 exch def /x1 exch def Transform a 1 unit vector in the x-direction through the
new transformation matrix to get the corresponding
vector in device space.

 /veclength x1 dup mul y1 dup mul add sqrt def Find the length of this device space vector.
 /frequency findresolution veclength div def The frequency is the resolution of the device divided by

the length of the vector.
 /newscreenangle y1 x1 atan def Determine the new screen angle based on the angle of

the transformed unit vector in device space.
 m 2 get m 1 get mul m 0 get m 3 get mul sub
 0 gt

Merely determining the screen angle is not enough in
some cases since the user coordinate system might be a
reflected image of the device coordinate system. We can
check for reflected images by testing the transformation
matrix. Given a matrix [a b c d tx ty], if (c*b - a*d) > 0
then it’s a reflected transformation.

 { { neg } /spotfunction load concatprocs
 /spotfunction exch def
 } if

Compensate for the reflection by flipping the y
coordinate that is passed to the spot function procedure.
We accomplish this by concatenating a procedure to flip
the y coordinate with the original spot function
procedure to create a new spot function procedure. It is
very important that the flip procedure precedes the spot
function procedure.

 frequency newscreenangle /spotfunction load
 setscreen

Now set up the halftone screen using the setscreen
operator.

 end
 } def

/setpatterndict 18 dict def
setpatterndict begin

Local storage for the procedure ‘‘setpattern.’’ The
‘‘bitison’’ procedure is used by ‘‘setpattern.’’

 /bitison
 { /ybit exch def /xbit exch def

‘‘bitison’’ returns true if the bit at position (xbit, ybit)
in ‘‘bstring’’ is ‘‘on’’ (i.e., it has the value 1), it returns
false otherwise. ‘‘bitison’’ takes 2 arguments: the x
and y position of the bit in a 2 dimensional coordinate
system. It relies on the two global variables ‘‘bstring’’

195

Program 15 / Filling an Area with a Pattern
(continued)

and ‘‘bwidth’’ (documented in ‘‘setpattern’’ below).
 /bytevalue bstring ybit bwidth mul xbit 8 idiv
 add get def

Get the integer representation of the hexadecimal
character pair containing the bit to be tested in the
string.

 /mask 1 7 xbit 8 mod sub bitshift def Create a mask to address the correct bit.
 bytevalue mask and 0 ne
 } def

Leave the boolean result on the operand stack.

end

/bitpatternspotfunction
 { setpatterndict begin
 /y exch def /x exch def

‘‘bitpatternspotfunction’’ is the procedure provided to
the ‘‘setuserscreen’’ procedure as the spot function.
Like all setscreen spot functions, it takes two
arguments: the x and y coordinates of a pixel in a
halftone screen cell. (See the section on Halftone
Screens in the ‘‘POSTSCRIPT Language Reference
Manual.’’) Note that the global variables ‘‘onbits’’ and
‘‘offbits’’ must be set to 0 before this spot function is
used with the setscreen operator (see ‘‘setpattern’’
below).

 /xindex x 1 add 2 div bpside mul cvi def
 /yindex y 1 add 2 div bpside mul cvi def

First, transform the (x, y) position into a position to
address into the bit pattern. Since the x and y values
provided to the spot function are between -1 and 1,
transform them into integers between 0 and (bpside-1).

 xindex yindex bitison
 { /onbits onbits 1 add def 1 }
 { /offbits offbits 1 add def 0 }
 ifelse

If the bit is on, increment the ‘‘onbits’’ count and return
a high value, otherwise increment the ‘‘offbits’’ count
and return a low value.

 end
 } def

/setpattern
 { setpatterndict begin
 /cellsz exch def
 /angle exch def
 /bwidth exch def
 /bpside exch def
 /bstring exch def

‘‘setpattern’’ sets up the halftone screen machinery so
that a repeating bitmap pattern will be used for
subsequent graphics output operations. It takes 5
arguments: ‘‘bstring’’ is the bit pattern represented as a
string, ‘‘bpside’’ is the number of bits per side (the
pattern must be square), ‘‘bwidth’’ is an integer
specifying the width of the pattern in bytes (each row of
the pattern is expressed in an integral number of bytes,
which may contain extra zeroes if ‘‘bpside’’ is not a
multiple of 8), ‘‘angle’’ is the screen angle and ‘‘cellsz’’
is the halftone screen cell size. The first 3 arguments
later serve as global variables to ‘‘bitison.’’

 /onbits 0 def /offbits 0 def Initialize ‘‘onbits’’ and ‘‘offbits.’’
 cellsz angle /bitpatternspotfunction load Set up the halftone screen.
 setuserscreen
 {} settransfer Don’t allow correction of gray values, because we want

196

Program 15 / Filling an Area with a Pattern
(continued)

to set the gray exactly according to the off-bit/total-bits
ratio.

 offbits offbits onbits add div setgray
 end
 } def

By setting the gray this way, the exact number of ‘‘on’’
bits will turn on in the screen. The values of ‘‘offbits’’
and ‘‘onbits’’ are calculated when the setscreen
operator is executed (see ‘‘bitpatternspotfunction’’
above).

/enlargebits
 { /bwidth exch def
 /bpside exch def
 /bstring exch def

‘‘enlargebits’’ is used to print an enlarged bit pattern to
illustrate the bit patterns used in ‘‘setpattern’’ below. It
takes 3 arguments: ‘‘bstring,’’ ‘‘bpside,’’ and ‘‘bwidth’’
(See description of ‘‘setpattern’’ above). A black square
is printed for each ‘‘on’’ bit. The squares are one unit in
size so the coordinate system should be scaled
appropriately before ‘‘enlargebits’’ is called. Note that
the earlier bits in the pattern are printed in the lower
positions of the grid. The high order bit of the first byte
of the pattern is the lower left bit, and the low order bit
of the last byte in the pattern is the upper right bit.

 0.08 setlinewidth Specify a small line width since this will be scaled.
 0 1 bpside 1 sub For each bit in the y direction ...
 { /y exch def
 0 1 bpside 1 sub For each bit in the x direction ...
 { /x exch def
 x y setpatterndict /bitison get cvx exec
 { gsave
 x y translate

If the bit is ‘‘on’’ print a black square at the appropriate
place on the page.

 newpath Define a 1 unit square path.
 0 0 moveto 0 1 lineto
 1 1 lineto 1 0 lineto
 closepath
 gsave 0 setgray fill grestore Fill it in with black.
 1 setgray stroke Put a white outline around it.
 grestore
 } if
 } for
 } for
 newpath
 0 0 moveto 0 bpside lineto
 bpside dup lineto bpside 0 lineto
 closepath 0 setgray stroke

Put a black outline around the entire bit pattern.

 } def

197

Program 15 / Filling an Area with a Pattern
(continued)

/inch {72 mul} def

/showpattern
 { /ang exch def
 /pat exch def
 gsave

‘‘showpattern’’ demonstrates the use of the above
functions. First display a pattern as enlarged bits, and
then use it to fill an area below the enlarged bits on the
page.

 0 3.5 inch translate
 3 8 div inch dup scale
 pat 8 1 enlargebits Show the enlarged version of the pattern.
 grestore
 pat 8 1 ang 72 300 32 div div setpattern First set up the pattern with the halftone screen

machinery. The patterns we are using are 8 bits wide
(i.e., 1 byte wide) and we want a target frequency that is
a multiple of 16 bits (see implementation note above).

 newpath Define an area to be filled.
 0 0 moveto 3 inch 0 lineto
 3 inch dup lineto 0 3 inch lineto
 closepath fill
 } def

/pat1 <d1e3c5885c3e1d88> def
/pat2 <3e418080e3140808> def

Use hexadecimal string notation to set the bit patterns.
Each pair of hexadecimal characters represents a ‘‘row’’
in the bit pattern.

/Helvetica findfont 12 scalefont setfont Font used for printing captions.

gsave
 1 inch 1.25 inch translate
 pat1 0 showpattern Show a basket weave pattern on the left.
grestore
1 inch 1 inch moveto
(Basket weave, no rotation in user space) show

gsave
 4.5 inch 1.25 inch translate
 pat2 90 showpattern
grestore
4.5 inch 1 inch moveto
(Fish scale, 90 degree rotation) show
(in user space) show

Show a fish scale pattern on the right, but rotate it by 90
degrees. The enlarged bitmap pattern is not rotated but
the filled area is.

showpage

Making an Outline Font

Re-encoding an Entire Font

 Octal Standard EBCDIC
Number Char Char

 Octal Standard EBCDIC
Number Char Char

 Octal Standard EBCDIC
Number Char Char

 Octal Standard EBCDIC
Number Char Char

0
1
2
3
4
5
6
7
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41 !
42 "
43 #
44 $
45 %
46 &
47 ’
50 (
51)
52 *
53 +
54 ,
55 -
56 .
57 /
60 0
61 1
62 2
63 3
64 4
65 5
66 6
67 7
70 8
71 9
72 :
73 ;
74 <
75 =
76 >
77 ?

100 @
101 A
102 B
103 C
104 D
105 E
106 F
107 G
110 H
111 I
112 J ¢
113 K .
114 L <
115 M (
116 N +
117 O |
120 P &
121 Q
122 R
123 S
124 T
125 U
126 V
127 W
130 X
131 Y
132 Z !
133 [$
134 \ *
135])
136 ^ ;
137 _ ~
140 ‘ -
141 a /
142 b
143 c
144 d
145 e
146 f
147 g
150 h
151 i
152 j
153 k ,
154 l %
155 m _
156 n >
157 o ?
160 p
161 q
162 r
163 s
164 t
165 u
166 v
167 w
170 x
171 y
172 z :
173 { #
174 | @
175 } ’
176 ~ =
177 "

200
201 a
202 b
203 c
204 d
205 e
206 f
207 g
210 h
211 i
212
213
214
215
216
217
220
221 j
222 k
223 l
224 m
225 n
226 o
227 p
230 q
231 r
232
233
234
235
236
237
240
241 ¡
242 ¢ s
243 £ t
244 ⁄ u
245 ¥ v
246 ƒ w
247 § x
250 ¤ y
251 ' z
252 “
253 «
254 ‹
255 ›
256 fi
257 fl
260
261 –
262 †
263 ‡
264 ·
265
266 ¶
267 •
270 ‚
271 „
272 ”
273 »
274 …
275 ‰
276
277 ¿

300
301 ` A
302 ´ B
303 ˆ C
304 ˜ D
305 ¯ E
306 ˘ F
307 ˙ G
310 ¨ H
311 I
312 ˚
313 ¸
314
315 ˝
316 ˛
317 ˇ
320 —
321 J
322 K
323 L
324 M
325 N
326 O
327 P
330 Q
331 R
332
333
334
335
336
337
340
341 Æ
342 S
343 ª T
344 U
345 V
346 W
347 X
350 Ł Y
351 Ø Z
352 Œ
353 º
354
355
356
357
360 0
361 æ 1
362 2
363 3
364 4
365 ı 5
366 6
367 7
370 ł 8
371 ø 9
372 œ
373 ß
374
375
376
377

Making Small Changes
to Encoding Vectors

Boktryckarkonsten är källan till praktiskt taget all mänsklig odling.

Den förutan hade de oerhörda framstegen inom vetenskap

och teknik inte varit möjliga.

–VALTER FALK

Printing is the source of practically all human evolution.

Without it the tremendous progress in the fields of science and

technology would not have been possible.

Changing the Character Widths
of a Font

HOHOHOHO oaobocodoeofogohoiojokolomonopoqorosotouovowoxoyoz
HOHOHOHO oaobocodoeofogohoiojokolomonopoqorosotouovowoxoyoz

HOHOHOHO oaobocodoeofogohoiojokolomonopoqorosotouovowoxoyoz
HOHOHOHO oaobocodoeofogohoiojokolomonopoqorosotouovowoxoyoz

HOHOHOHO oaobocodoeofogohoiojokolomonopoqorosotouovowoxoyoz
HOHOHOHO oaobocodoeofogohoiojokolomonopoqorosotouovowoxoyoz

Creating an Analytic Font

aEvery bullet has its billet. –William III
aThe bullet that will kill me is not yet cast. –Napoleon I
aThe ballot is stronger than the bullet. –Abraham Lincoln

bEvery bullet has its billet. –William III
bThe bullet that will kill me is not yet cast. –Napoleon I
bThe ballot is stronger than the bullet. –Abraham Lincoln

cEvery bullet has its billet. –William III
cThe bullet that will kill me is not yet cast. –Napoleon I
cThe ballot is stronger than the bullet. –Abraham Lincoln

Hieroglyphics are the root of letters. All
characters were originally signs and all
signs were once images. Human society,
the world, man in his entirety is in the
alphabet.d

Creating a Bitmap Font

the tendency of the best

typography has been and

still should be in the path of

simplicity, legibility, and

orderly arrangement.

theodore low de vinne

PROGRAMS 16–21

Although a large variety of fonts are available with the
POSTSCRIPT language, there are situations when users may wish
to modify the existing fonts or create new fonts. This section
presents several examples of modifying existing fonts to change
their rendering style (from filled to outlined), the character
widths or the encoding of characters. There are also 2 examples
of creating entirely new fonts: one using bitmap character
descriptions and the other using analytic character descriptions.

The basic underlying structure of a font is the font dictionary.
When fonts are modified, the entries in the font dictionary are
changed. When new fonts are created, certain crucial entries in
the font dictionary must be present. Some of the details on the
entries in a font dictionary and how to modify them are ex-
plained below; for a full explanation refer to the POSTSCRIPT

Language Reference Manual.

MODIFYING EXISTING FONTS

The basic strategy for modifying an existing font is to create an
entirely new font dictionary and to copy all the references to
entries in the original font dictionary, except for the FID entry,
into the new dictionary. The next step is to modify the ap-
propriate fields. The last step is to perform a definefont opera-
tion on the modified font dictionary to make it into a
POSTSCRIPT font.

There are two important steps to remember when modifying an

199

existing font. The first is not to copy the FID field from the
original font dictionary to the new dictionary. The FID field will
automatically get created when the definefont operator is ex-
ecuted. Attempting to perform a definefont operation on a dic-
tionary that already contains an FID field results in an
invalidfont error. The second step is to change the FontName
field in the new dictionary. The same name which appears in the
FontName field should be provided as an argument to the
definefont operator. The FontName should always be a unique
name.

In addition, for fonts that have a UniqueID field, it is important
to change the UniqueID field when the font is modified. The
only case when the UniqueID field should not be changed is
when the Encoding field of a font dictionary has been changed.
Changing the UniqueID should be done with care. See the
programs ‘‘Making an Outline Font’’ and ‘‘Changing the Char-
acter Widths of a Font’’ for examples of this.

CREATING NEW FONTS

When creating new fonts, certain font dictionary entries must be
present. They are FontMatrix, FontType, FontBBox, Encoding
and BuildChar. For a user defined font, the FontType should al-
ways have the value 3. In addition, it is useful, although not
necessary, to have a UniqueID entry. The UniqueID entry
facilitates better caching of characters on disk-based implemen-
tations of the POSTSCRIPT interpreter. (Be forewarned that the
UniqueID must truly be a unique 24 bit number and that the
creator of the font is responsible for ensuring this.)

The BuildChar procedure is responsible for specifying how a
character in the new font is rendered. It should always call either
the setcachedevice or setcharwidth operator. The BuildChar
procedure can use almost all of the POSTSCRIPT operators to
render a character. However, there are some restrictions when
the character is to be cached (i.e., when the setcachedevice
operator has been used). In this case, any of the operators related
to gray-level and color are invalid (e.g., setgray, setrgbcolor,
image, etc).

200 MODIFYING AND CREATING FONTS

In the character descriptions for a new font, it is a good idea to
create a character description that will be printed for
‘‘undefined’’ characters. This character is called ‘‘.notdef’’ in
the built-in fonts, and it is defined to print nothing. When users
try to print characters that have not been defined in the font, the
‘‘.notdef’’ character is printed; the ‘‘.notdef’’ character is a
graceful way of avoiding unexpected errors. As well as creating
a character description for the undefined character, it is impor-
tant that the encoding vector have the name of this undefined
character in each location that does not have a character defined.
The simplest way to do this is to initialize all the entries in the
encoding vector to contain the ‘‘.notdef’’ character and then
enter the character names in the desired positions.

ABOUT THE PROGRAMS

The program ‘‘Making an Outline Font’’ is an example of
modifying an existing font to change its rendering style. The
program defines a general procedure ‘‘MakeOutlineFont’’ that
takes one of the standard built-in fonts and converts it to an
outline font. (The term ‘‘built-in fonts’’ refers to the collection
of fonts available with a POSTSCRIPT implementation.) This pro-
cedure will only yield the correct results for fonts that have their
characters described as outlines.

‘‘Re-encoding an Entire Font’’ presents a general procedure
‘‘ReEncode’’ for changing the encoding vector of a font. The
encoding vector is a mapping of character codes (in the range of
0 to 255) to character names. Most of the built-in fonts are en-
coded according to a standard encoding, but there are cases
where other encodings may be required such as printing text that
has been represented according to the EBCDIC encoding. The
specific example demonstrated in the program ‘‘Re-encoding an
Entire Font’’ re-encodes a built-in font to have the EBCDIC en-
coding by replacing the encoding vector in the font dictionary
with an entirely new encoding vector.

‘‘Making Small Changes to Encoding Vectors’’ presents an al-
ternative to replacing the entire encoding vector for situations
when the encoding vector only needs to be changed slightly.
Most of the built-in fonts contain characters that have not been

ABOUT THE PROGRAMS 201

encoded, such as accented characters. To print such characters,
the name of the character must be inserted into the encoding vec-
tor. However, we do not want to specify the entire encoding vec-
tor to insert a few new characters so the procedure
‘‘ReEncodeSmall’’ has been defined to handle this insertion.

When encoding accented characters it is important to understand
that accented characters (also known as composite characters)
are actually a composite of the letter and the accent. In order to
print accented characters properly, both the letter and the accent
of the composite character must be encoded in the encoding vec-
tor, as well as the composite character itself. For example, if you
wish to encode the composite character ‘‘Aacute,’’ both the
‘‘A’’ and the ‘‘acute’’ must be encoded.

‘‘Changing the Character Widths of a Font’’ defines a general
procedure, ‘‘ModifyWidths,’’ for changing some or all of the
character widths in a given font. It changes the necessary entries
in the font dictionary. In this example the character widths of a
font are rounded such that when the characters are printed at a
certain point size, the widths will be an integral number of pixels
in device space. This is useful for avoiding round-off error in
positioning characters with the show operator.

The program ‘‘Creating an Analytic Font’’ demonstrates how to
create a new font whose character descriptions are geometric in
nature. The program defines all the necessary font dictionary
entries as well as some new entries of its own. The font created
has 4 characters: bullets of three sizes and an open box shape.
Each character is described using the POSTSCRIPT graphic
operators. After the font has been defined it is used in an ex-
ample that prints the various characters intermixed with one of
the built-in fonts.

The final program, ‘‘Creating a Bitmap Font,’’ demonstrates an
efficient way to create a new font whose character descriptions
are bitmaps.

202 MODIFYING AND CREATING FONTS

203

1 inch
72 points

205

Program 16 / Making an Outline Font

This program defines a general procedure to take one of
the built-in filled fonts and convert it into an outline
font. (This program will also work for downloadable
fonts available from Adobe Systems, Inc.).

/makeoutlinedict 7 dict def Local storage for the procedure ‘‘MakeOutlineFont.’’
/MakeOutlineFont
 { makeoutlinedict begin
 /uniqueid exch def
 /strokewidth exch def
 /newfontname exch def
 /basefontname exch def

‘‘MakeOutlineFont’’ takes one of the built-in filled
fonts and makes an outlined font out of it. It takes four
arguments: the name of the font on which to base the
outline version, the new name for the outline font, a
stroke width to use on the outline and a unique ID.

 /basefontdict basefontname findfont def Get the dictionary of the font on which the outline
version will be based.

 /numentries basefontdict maxlength 1 add def Determine how large the new font dictionary for the
outline font should be. Make it one entry larger to
accommodate an entry for the stroke width used on the
outline.

 basefontdict /UniqueID known not
 { /numentries numentries 1 add def } if

Make sure there is room for the unique ID field. (Not all
fonts have UniqueID fields initially. In particular, the
built-in fonts in POSTSCRIPT version 23.0 do not.)

 /outfontdict numentries dict def Create a dictionary to hold the description for the
outline font.

 basefontdict
 { exch dup /FID ne
 { exch outfontdict 3 1 roll put }

Copy all the entries in the base font dictionary to the
outline dictionary, except for the FID.

 { pop pop } Ignore the FID pair.
 ifelse
 } forall

 outfontdict /FontName newfontname put Insert the new name into the dictionary.
 outfontdict /PaintType 2 put Change the paint type to outline.
 outfontdict /StrokeWidth strokewidth put Insert the stroke width into the dictionary.
 outfontdict /UniqueID uniqueid put Insert the new unique ID.

 newfontname outfontdict definefont pop
 end
 } def

Now make the outline dictionary into a POSTSCRIPT font.
We will ignore the modified dictionary returned on the
stack by the definefont operator.

1 inch
72 points

207

Program 16 / Making an Outline Font
(continued)

The following demonstrates how to use the
‘‘MakeOutlineFont’’ procedure and how to determine
new unique ID’s.

/Helvetica-Bold /Helvetica-Outline1 1000 54 div The stroke width is always specified in the character
coordinate system (1000 units) The value specified here,
1000/54 will yield a one point wide outline when the
font is scaled to 54 points in size. Note that this outline
width changes with different point sizes.

 /Helvetica-Bold findfont dup /UniqueID known
 { /UniqueID get 1 add }
 { pop 1 }
 ifelse

Determine the unique ID. If the ‘‘base’’ font already
contains a unique ID, add a unique constant to it,
otherwise pick a unique integer and leave that value on
the operand stack.

 MakeOutlineFont

/Helvetica-Outline1 findfont 36 scalefont setfont
 72 504 moveto (outline) show

/Helvetica-Outline1 findfont 54 scalefont setfont
 (outline) show

/Helvetica-Bold /Helvetica-Outline2 1000 36 div A stroke width value of 1000/36 yields a one point wide
outline when the font is scaled to 36 points in size. It
yields a 1.5 point outline when the font is scaled to 54
points in size (54/36 = 1.5).

 /Helvetica-Bold findfont dup /UniqueID known
 { /UniqueID get 2 add }
 { pop 2 }
 ifelse
 MakeOutlineFont

/Helvetica-Outline2 findfont 36 scalefont setfont
 72 444 moveto (outline) show

/Helvetica-Outline2 findfont 54 scalefont setfont
 (outline) show
showpage

NOTE: If the font is scaled anamorphically, the outline
stroke on the characters will be scaled anamorphically
as well, leading to potentially undesirable results.

1 inch
72 points

 Octal Standard EBCDIC
Number Char Char

 Octal Standard EBCDIC
Number Char Char

 Octal Standard EBCDIC
Number Char Char

 Octal Standard EBCDIC
Number Char Char

0
1
2
3
4
5
6
7
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41 !
42 "
43 #
44 $
45 %
46 &
47 ’
50 (
51)
52 *
53 +
54 ,
55 -
56 .
57 /
60 0
61 1
62 2
63 3
64 4
65 5
66 6
67 7
70 8
71 9
72 :
73 ;
74 <
75 =
76 >
77 ?

100 @
101 A
102 B
103 C
104 D
105 E
106 F
107 G
110 H
111 I
112 J ¢
113 K .
114 L <
115 M (
116 N +
117 O |
120 P &
121 Q
122 R
123 S
124 T
125 U
126 V
127 W
130 X
131 Y
132 Z !
133 [$
134 \ *
135])
136 ^ ;
137 _ ~
140 ‘ -
141 a /
142 b
143 c
144 d
145 e
146 f
147 g
150 h
151 i
152 j
153 k ,
154 l %
155 m _
156 n >
157 o ?
160 p
161 q
162 r
163 s
164 t
165 u
166 v
167 w
170 x
171 y
172 z :
173 { #
174 | @
175 } ’
176 ~ =
177 "

200
201 a
202 b
203 c
204 d
205 e
206 f
207 g
210 h
211 i
212
213
214
215
216
217
220
221 j
222 k
223 l
224 m
225 n
226 o
227 p
230 q
231 r
232
233
234
235
236
237
240
241 ¡
242 ¢ s
243 £ t
244 ⁄ u
245 ¥ v
246 ƒ w
247 § x
250 ¤ y
251 ' z
252 “
253 «
254 ‹
255 ›
256 fi
257 fl
260
261 –
262 †
263 ‡
264 ·
265
266 ¶
267 •
270 ‚
271 „
272 ”
273 »
274 …
275 ‰
276
277 ¿

300
301 ` A
302 ´ B
303 ˆ C
304 ˜ D
305 ¯ E
306 ˘ F
307 ˙ G
310 ¨ H
311 I
312 ˚
313 ¸
314
315 ˝
316 ˛
317 ˇ
320 —
321 J
322 K
323 L
324 M
325 N
326 O
327 P
330 Q
331 R
332
333
334
335
336
337
340
341 Æ
342 S
343 ª T
344 U
345 V
346 W
347 X
350 Ł Y
351 Ø Z
352 Œ
353 º
354
355
356
357
360 0
361 æ 1
362 2
363 3
364 4
365 ı 5
366 6
367 7
370 ł 8
371 ø 9
372 œ
373 ß
374
375
376
377

209

Program 17 / Re-encoding an Entire Font

This program defines a general procedure for
re-encoding the entire encoding vector for a font. The
specific example demonstrated shows how to re-encode
one of the built-in fonts according to the EBCDIC
character set encoding.

/reencodedict 5 dict def Local storage for the procedure ‘‘ReEncode.’’
/ReEncode
 { reencodedict begin
 /newencoding exch def
 /newfontname exch def
 /basefontname exch def

‘‘ReEncode’’ generates a new re-encoded font. It takes
3 arguments: the name of the font to be re-encoded, a
new name, and a new encoding vector. ReEncode copies
the existing font dictionary, replacing the FontName and
Encoding fields, then generates a new FID and enters
the new name in FontDirectory with the definefont
operator. The new name provided can later be used in a
findfont operation.

 /basefontdict basefontname findfont def Get the dictionary of the font on which the re-encoded
version will be based.

 /newfont basefontdict maxlength dict def Create a dictionary to hold the description for the
re-encoded font.

 basefontdict
 { exch dup dup /FID ne exch /Encoding ne and
 { exch newfont 3 1 roll put }

Copy all the entries in the base font dictionary to the
new dictionary except for the FID and Encoding fields.

 { pop pop } Ignore the FID and Encoding pairs.
 ifelse
 } forall
 newfont /FontName newfontname put
 newfont /Encoding newencoding put

Install the new name and the new encoding vector in the
font.

 newfontname newfont definefont pop
 end
 } def

Now make the re-encoded font dictionary into a
POSTSCRIPT font. Ignore the modified dictionary on the
operand stack returned by the definefont operator.

/EBCDIC 256 array def
0 1 255 { EBCDIC exch /.notdef put } for
EBCDIC
 dup 8#100 /space put
 dup 8#112 /cent put dup 8#116 /plus put
 dup 8#113 /period put dup 8#117 /bar put
 dup 8#114 /less put dup 8#120 /ampersand put
 dup 8#115 /parenleft put

 dup 8#132 /exclam put dup 8#140 /hyphen put
 dup 8#133 /dollar put dup 8#141 /slash put
 dup 8#134 /asterisk put
 dup 8#135 /parenright put
 dup 8#136 /semicolon put
 dup 8#137 /asciitilde put

To illustrate how the ReEncode procedure is used, we
will re-encode one of the built-in fonts to support the
EBCDIC encoding. (The EBCDIC encoding used is
referenced in ‘‘IBM System/360: Principles of
Operation,’’ Appendix F.) The first step in doing this is
to define an array containing that encoding. This array is
referred to as an ‘‘encoding vector.’’ The encoding
vector should be 256 entries long. Since the encoding
vector is rather sparse, all the entries are initialized to
‘‘.notdef.’’ Those entries which correspond to characters
in the EBCDIC encoding are filled in with the proper
character name. The octal character code for the
character is used to access the encoding vector.

210

Program 17 / Re-encoding an Entire Font
(continued)

 dup 8#153 /comma put
 dup 8#154 /percent put
 dup 8#155 /underscore put
 dup 8#156 /greater put
 dup 8#157 /question put

Continuation of the EBCDIC encoding vector
definition.

 dup 8#172 /colon put
 dup 8#173 /numbersign put
 dup 8#174 /at put
 dup 8#175 /quoteright put
 dup 8#176 /equal put
 dup 8#177 /quotedbl put

 dup 8#201 /a put dup 8#206 /f put
 dup 8#202 /b put dup 8#207 /g put
 dup 8#203 /c put dup 8#210 /h put
 dup 8#204 /d put dup 8#211 /i put
 dup 8#205 /e put

 dup 8#221 /j put dup 8#226 /o put
 dup 8#222 /k put dup 8#227 /p put
 dup 8#223 /l put dup 8#230 /q put
 dup 8#224 /m put dup 8#231 /r put
 dup 8#225 /n put

 dup 8#242 /s put dup 8#246 /w put
 dup 8#243 /t put dup 8#247 /x put
 dup 8#244 /u put dup 8#250 /y put
 dup 8#245 /v put dup 8#251 /z put

 dup 8#301 /A put dup 8#306 /F put
 dup 8#302 /B put dup 8#307 /G put
 dup 8#303 /C put dup 8#310 /H put
 dup 8#304 /D put dup 8#311 /I put
 dup 8#305 /E put

 dup 8#321 /J put dup 8#326 /O put
 dup 8#322 /K put dup 8#327 /P put
 dup 8#323 /L put dup 8#330 /Q put
 dup 8#324 /M put dup 8#331 /R put
 dup 8#325 /N put

 dup 8#342 /S put dup 8#346 /W put
 dup 8#343 /T put dup 8#347 /X put
 dup 8#344 /U put dup 8#350 /Y put
 dup 8#345 /V put dup 8#351 /Z put

211

Program 17 / Re-encoding an Entire Font
(continued)

 dup 8#360 /zero put dup 8#365 /five put
 dup 8#361 /one put dup 8#366 /six put
 dup 8#362 /two put dup 8#367 /seven put
 dup 8#363 /three put dup 8#370 /eight put
 dup 8#364 /four put dup 8#371 /nine put
pop Remove the array from the operand stack.

/TR /Times-Roman findfont 10 scalefont def
/Times-Roman /Times-Roman-EBCDIC EBCDIC
 ReEncode
/TRE /Times-Roman-EBCDIC findfont 10 scalefont
 def

Print a table comparing the standard POSTSCRIPT

character set encoding with the EBCDIC encoding. Set
up the fonts to be used: Times Roman with the standard
encoding and Times Roman with the EBCDIC
encoding.

TR setfont
0 1 3
 { /counter exch def
 40 counter 133 mul add 720 moveto
 (Octal Standard EBCDIC) show
 40 counter 133 mul add 720 10 sub moveto
 (Number Char Char) show
 } for

Print each column heading in the standard Times
Roman.

/showstring 1 string def
/counterstring 3 string def

String definitions used to show characters and numbers
below.

/yline 690 def
/xstart 52 def

Print the table of character codes and corresponding
characters.

0 1 255
 { /counter exch def
 /charstring showstring dup 0 counter put def

For each character code from 0 to 255, print the
corresponding standard and EBCDIC characters.

 TR setfont xstart yline moveto
 counter 8 counterstring cvrs show Print the character code in octal using cvrs.
 xstart 42 add yline moveto
 charstring show Print the corresponding standard character.
 TRE setfont xstart 86 add yline moveto
 charstring show Print the corresponding EBCDIC character.
 /yline yline 10 sub def Move down one line.
 counter 1 add 64 mod 0 eq
 { /xstart xstart 133 add def
 /yline 690 def
 } if

If we have reached the 64th line, move over by a
column and start at the top again.

 } for

showpage

1 inch
72 points

Boktryckarkonsten är källan till praktiskt taget all mänsklig odling.

Den förutan hade de oerhörda framstegen inom vetenskap

och teknik inte varit möjliga.

–VALTER FALK

Printing is the source of practically all human evolution.

Without it the tremendous progress in the fields of science and

technology would not have been possible.

213

Program 18 / Making Small Changes to Encoding Vectors

This program is slightly different from the previous
program in that it keeps the original encoding vector of
the font but it overwrites portions of it with the new
encodings specified. This method is useful when
re-encoding a font to contain accented (composite)
characters.

/reencsmalldict 12 dict def Local storage for the procedure ‘‘ReEncodeSmall.’’
/ReEncodeSmall
 { reencsmalldict begin
 /newcodesandnames exch def
 /newfontname exch def
 /basefontname exch def

‘‘ReEncodeSmall’’ generates a new re-encoded font. It
takes 3 arguments: the name of the font to be
re-encoded, a new name, and an array of new character
encoding and character name pairs (see the definition of
the ‘‘scandvec’’ array below for the format of this
array). This method has the advantage that it allows the
user to make changes to an existing encoding vector
without having to specify an entire new encoding
vector. It also saves space when the character encoding
and name pairs array is smaller than an entire encoding
vector.

 /basefontdict basefontname findfont def Get the font dictionary on which to base the re-encoded
version.

 /newfont basefontdict maxlength dict def Create a dictionary to hold the description for the
re-encoded font.

 basefontdict
 { exch dup /FID ne

Copy all the entries in the base font dictionary to the
new dictionary except for the FID field.

 { dup /Encoding eq
 { exch dup length array copy Make a copy of the Encoding field.
 newfont 3 1 roll put }
 { exch newfont 3 1 roll put }
 ifelse
 }
 { pop pop } Ignore the FID pair.
 ifelse
 } forall

 newfont /FontName newfontname put Install the new name.
 newcodesandnames aload pop Modify the encoding vector. First load the new

encoding and name pairs onto the operand stack.
 newcodesandnames length 2 idiv
 { newfont /Encoding get 3 1 roll put}
 repeat

For each pair on the stack, put the new name into the
designated position in the encoding vector.

 newfontname newfont definefont pop
 end
 } def

Now make the re-encoded font description into a
POSTSCRIPT font. Ignore the modified dictionary
returned on the operand stack by the definefont
operator.

1 inch
72 points

Boktryckarkonsten är källan till praktiskt taget all mänsklig odling.

Den förutan hade de oerhörda framstegen inom vetenskap

och teknik inte varit möjliga.

–VALTER FALK

Printing is the source of practically all human evolution.

Without it the tremendous progress in the fields of science and

technology would not have been possible.

215

Program 18 / Making Small Changes to Encoding Vectors
(continued)

/scandvec [
 8#300 /Oacute
 8#311 /Adieresis
 8#321 /oacute
 8#322 /Ograve
 8#323 /Scaron
 8#324 /ograve
 8#325 /scaron
 8#330 /Edieresis
 8#331 /adieresis
 8#332 /edieresis
 8#333 /Odieresis
 8#334 /odieresis
 8#340 /Aacute
 8#342 /Aring
 8#344 /Zcaron
 8#347 /Eacute
 8#360 /aacute
 8#362 /aring
 8#364 /zcaron
 8#367 /eacute
] def

Define an array of new character encoding and name
pairs that will enable us to print the accented characters
in the Scandinavian languages. The array is a series of
encoding number and name pairs. The encoding number
always precedes the character name. Since it contains
pairs, there must be an even number of elements in this
array. The encoding vector positions for these new
characters have been chosen so that they do not actually
replace any of the characters in the standard encoding.

/ss { 72 yline moveto show
 /yline yline 36 sub def } def

This procedure shows a string and then skips a line.

/Times-Roman /Times-Roman-Scand scandvec
 ReEncodeSmall

Re-encode the standard Times Roman to include the
accented characters for the Scandinavian Languages.

/Times-Roman-Scand findfont 16 scalefont
 setfont
/yline 500 def
(Boktryckarkonsten \331r k\331llan till praktiskt\
 taget all m\331nsklig odling.) ss

Print some text with accented characters. Since the
accented characters are in the upper half of the encoding
vector we must refer to them by their octal codes.

(Den f\334rutan hade de oerh\334rda framstegen\
 inom vetenskap) ss
(och teknik inte varit m\334jliga.) ss
(\261VALTER FALK) ss

/Times-Italic findfont 14 scalefont setfont
/yline 500 18 sub def
(Printing is the source of practically all human\
 evolution.) ss
(Without it the tremendous progress in the\
 fields of science and) ss
(technology would not have been possible.) ss
showpage

HOHOHOHO oaobocodoeofogohoiojokolomonopoqorosotouovowoxoyoz
HOHOHOHO oaobocodoeofogohoiojokolomonopoqorosotouovowoxoyoz

HOHOHOHO oaobocodoeofogohoiojokolomonopoqorosotouovowoxoyoz
HOHOHOHO oaobocodoeofogohoiojokolomonopoqorosotouovowoxoyoz

HOHOHOHO oaobocodoeofogohoiojokolomonopoqorosotouovowoxoyoz
HOHOHOHO oaobocodoeofogohoiojokolomonopoqorosotouovowoxoyoz

Although the program to the right is device independent, this page was printed
on a 300 dot per inch printer to emphasize the effect of rounding character widths.

6 point

7 point

8 point

217

Program 19 / Changing the Character Widths of a Font

This program demonstrates how to change the character
widths of a font. The specific example used shows how
to round the character widths such that when the font is
printed at a certain point size, the widths are an integral
number of pixels in device space.

/modwidthsdict 8 dict def Local storage for the procedure ‘‘ModifyWidths.’’
/ModifyWidths
 { modwidthsdict begin
 /uniqueid exch def
 /newwidths exch def
 /newfontname exch def
 /basefontname exch def

‘‘ModifyWidths’’ generates a new font. It takes 4
arguments: the name of the font whose widths are to be
changed, a new name, a dictionary containing the new
widths and a unique ID. ModifyWidths copies the
existing font dictionary, replacing the FontName field,
adds a Metrics entry and then defines a new font.

 /basefontdict basefontname findfont def Get the dictionary of the font on which the new version
will be based.

 /numentries basefontdict maxlength 1 add def Determine how large the new font dictionary should be.
Make sure it is one entry larger than the previous one so
that it has room for the Metrics entry.

 basefontdict /UniqueID known not
 { /numentries numentries 1 add def } if

Make sure there is room for the UniqueID field.

 /newfont numentries dict def Create the new dictionary
 basefontdict
 { exch dup dup /FID ne exch
 /FontBBox ne and
 { exch newfont 3 1 roll put }

Copy all the entries in the base font dictionary to the
new dictionary except for the FID and FontBBox (see
explanation below) fields.

 { pop pop } Ignore the FID and FontBBox pairs.
 ifelse
 } forall
 /newFontBBox basefontdict /FontBBox get
 aload length array astore def

Due to a problem in POSTSCRIPT version 23.0 it is
necessary to create an entirely new FontBBox entry
rather than simply make a copy. A new array is created
that contains the same values for the font bounding box
as the base font has.

 newfont /FontBBox newFontBBox put Install the new font bounding box.
 newfont /FontName newfontname put
 newfont /Metrics newwidths put

Install the new name and widths in the font.

 newfont /UniqueID uniqueid put Install the new unique ID.
 newfontname newfont definefont pop
 end
 } def

Now make the font dictionary with the new metrics into
a POSTSCRIPT font. Ignore the dictionary returned on the
operand stack by the definefont operator.

218

Program 19 / Changing the Character Widths of a Font
(continued)

/roundwidthsdict 13 dict def Local storage for the procedure ‘‘roundwidths.’’

roundwidthsdict /showstring 1 string put String used for stringwidth operations.

/roundwidths
 { roundwidthsdict begin
 /ptsize exch def
 /resolution exch def
 /fontname exch def

‘‘roundwidths’’ takes three arguments: a POSTSCRIPT

font name, a point size, and the resolution of the output
device (in the x direction). The resolution is specified in
pixels per inch. ‘‘roundwidths’’ returns a dictionary of
rounded widths on the operand stack. The widths are
rounded so that when they are scaled to the specified
point size, they will be an integral number of pixels in
device space.

 /thefont fontname findfont def Get the font dictionary associated with the font name.
 /newwidths thefont /CharStrings get length
 dict def

Allocate a new dictionary for widths. Make it as large as
necessary (there will never be more widths than there
are CharStrings entries).

 /pixelsperem ptsize 72 div resolution mul def Determine how many pixels are required for the given
point size.

 /unitsperpixel 1000 pixelsperem div def Determine how many units (in the 1000 unit font space)
map to one pixel.

 gsave
 nulldevice Perform the width calculations under the null device so

that we will get the actual widths without rounding
effects from the output device.

 thefont 1 scalefont setfont Use a 1 unit high font; it speeds up the time required for
determining the width of characters.

 /charcount 0 def
 thefont /Encoding get
 { /charname exch def

Compute the current width for each character in the
encoding vector.

 charname /.notdef ne
 { /charwidth showstring dup 0 charcount
 put stringwidth pop 1000 mul def

Get the current character width by performing a
stringwidth operation and convert it to 1000ths.

 /multiples charwidth unitsperpixel div
 round cvi def
 /newcharwidth unitsperpixel multiples
 mul def
 newwidths charname newcharwidth put
 } if

Store the newly computed width in the new dictionary
of widths.

 /charcount charcount 1 add def
 } forall
 grestore
 newwidths
 end

Leave the new dictionary of widths on the operand
stack.

 } def

219

Program 19 / Changing the Character Widths of a Font
(continued)

/findresdict 4 dict def
findresdict begin

Local storage for the procedure ‘‘findresolution.’’

 /tempmatrix matrix def Matrix used in computations.
 /epsilon 0.001 def
end

Error tolerance (see the ‘‘findresolution’’ procedure
below).

/findresolution
 { findresdict begin

‘‘findresolution’’ returns the resolution (in pixels per
inch) in the x-direction of the device being printed on.

 72 0 tempmatrix defaultmatrix dtransform
 /y exch def /x exch def

Since there are 72 units per inch in the default user
space, find out how many pixels those 72 units require
in device space.

 x abs epsilon gt y abs epsilon gt and
 { stop }

If both the x and y components of the vector returned by
the dtransform are larger than the error tolerance,
refuse to continue because we are in some non-90
degree rotated device space that wouldn’t make any
sense in our computations.

 { x dup mul y dup mul add sqrt } Leave the x-resolution on the operand stack.
 ifelse
 end
 } def The following prints a comparison of rounded vs.

non-rounded widths.
/showstring
 { (HOHOHOHO oaobocodoeofogohoiojoko) show
 (lomonopoqorosotouovowoxoyoz) show } def

This procedure simply shows a string of text.

/res findresolution def Get the resolution of the printing device.
/uid /Times-Roman findfont dup /UniqueID known
 {/UniqueID get}{pop 0} ifelse def

Find the original unique ID for the font we are using. If
it doesn’t have a unique ID, use zero.

/rwid /Times-Roman res 6 roundwidths def Compute the rounded widths for 6 pt. Times Roman.
/Times-Roman /TR6 rwid uid 1 add ModifyWidths Create a new font with the 6 pt. rounded widths.
/Times-Roman findfont 6 scalefont setfont Print the normal 6 pt. Times Roman.
130 560 moveto showstring
/TR6 findfont 6 scalefont setfont Print the 6 pt. Times Roman with rounded widths.
130 560 6 sub moveto showstring
/rwid /Times-Roman res 7 roundwidths def
/Times-Roman /TR7 rwid uid 2 add ModifyWidths
/Times-Roman findfont 7 scalefont setfont
130 500 moveto showstring

Repeat the same procedure for 7 point Times Roman.

/TR7 findfont 7 scalefont setfont
130 500 7 sub moveto showstring
/rwid /Times-Roman res 8 roundwidths def
/Times-Roman /TR8 rwid uid 3 add ModifyWidths
/Times-Roman findfont 8 scalefont setfont
130 440 moveto showstring
/TR8 findfont 8 scalefont setfont
130 440 8 sub moveto showstring

Repeat the same procedure for 8 point Times Roman.

showpage

1 inch
72 points

aEvery bullet has its billet. –William III
aThe bullet that will kill me is not yet cast. –Napoleon I
aThe ballot is stronger than the bullet. –Abraham Lincoln

bEvery bullet has its billet. –William III
bThe bullet that will kill me is not yet cast. –Napoleon I
bThe ballot is stronger than the bullet. –Abraham Lincoln

cEvery bullet has its billet. –William III
cThe bullet that will kill me is not yet cast. –Napoleon I
cThe ballot is stronger than the bullet. –Abraham Lincoln

Hieroglyphics are the root of letters. All
characters were originally signs and all
signs were once images. Human society,
the world, man in his entirety is in the
alphabet.d

221

Program 20 / Creating an Analytic Font

This program demonstrates how to define an entirely
new font with analytic (geometric) character
descriptions.

10 dict dup begin Create a dictionary for the font. Leave room for the FID
(fontID) entry.

 /FontType 3 def FontType 3 indicates that this is a user defined font.
 /FontMatrix [.001 0 0 .001 0 0] def Since the font coordinate system used for this font is

based on units of 1000 (as are the built-in fonts), specify
a FontMatrix that transforms the 1000 unit system to a 1
unit system.

 /FontBBox [50 0 760 700] def This is the bounding box that would result if all the
characters in the font were overlapped.

 /Encoding 256 array def Allocate storage for the encoding vector.
 0 1 255 {Encoding exch /.notdef put} for
 Encoding

Initialize all the entries in the encoding vector with
‘‘.notdef’’.

 dup (a) 0 get /smallbullet put
 dup (b) 0 get /mediumbullet put
 dup (c) 0 get /largebullet put
 (d) 0 get /openbox put

Associate the small bullet character with the character
code for a lowercase a, associate the medium bullet
character with the character code for a lowercase b, and
so on.

 /Metrics 5 dict def Allocate storage for the character widths.
 Metrics begin
 /.notdef 0 def
 /smallbullet 400 def
 /mediumbullet 520 def
 /largebullet 640 def
 /openbox 820 def
 end

Make sure there is a width for the ‘‘.notdef’’ character
as well as for all the other characters in the font.

 /BBox 5 dict def
 BBox begin

Create a dictionary for storing information about the
bounding boxes of the character descriptions.

 /.notdef [0 0 0 0] def Make sure there is a bounding box for ‘‘.notdef’’.
 /smallbullet [50 200 350 500] def
 /mediumbullet [50 150 450 550] def
 /largebullet [50 100 550 600] def
 /openbox [60 0 760 700] def
 end

The bounding box for the open box is slightly larger
than the path definition because it is stroked. Half of the
strokewidth (60/2 =30) is added to bounding box of the
outline.

 /CharacterDefs 5 dict def
 CharacterDefs begin

The ‘‘CharacterDefs’’ dictionary will hold the
descriptions for rendering the characters.

 /.notdef { } def There should always be a description for the undefined
character ‘‘.notdef’’ which does nothing.

222

Program 20 / Creating an Analytic Font
(continued)

 /smallbullet
 { newpath
 200 350 150 0 360 arc
 closepath
 fill } def

‘‘smallbullet’’ defines a path for drawing a small bullet
centered in the capheight of a font (in this case
capheight=700 units). It also fills the path.

 /mediumbullet
 { newpath
 250 350 200 0 360 arc
 closepath
 fill } def

‘‘mediumbullet’’ is defined similarly to ‘‘smallbullet.’’

 /largebullet
 { newpath
 300 350 250 0 360 arc
 closepath
 fill } def

‘‘largebullet’’ is defined similarly to ‘‘smallbullet.’’

 /openbox
 { newpath
 90 30 moveto 90 670 lineto
 730 670 lineto 730 30 lineto
 closepath
 60 setlinewidth
 stroke } def

‘‘openbox’’ defines a path for drawing an outlined box
that rests on the baseline and is as tall as the capheight
(700 units). It strokes the path with a line whose
thickness is 60 units out of 1000.

 end Finished defining the characters.

 /BuildChar
 { 0 begin

The procedure ‘‘BuildChar’’ is called every time a
character from this font must be constructed.

 /char exch def
 /fontdict exch def

The character code and font dictionary are provided as
arguments.

 /charname fontdict /Encoding get char get def
 fontdict begin

Convert the character code to the corresponding name
by looking it up in the encoding vector.

 Metrics charname get 0 Find the width of the character.
 BBox charname get aload pop Find the bounding box of the character and push it onto

the stack.
 setcachedevice Using the setcachedevice operator enables the

characters from this font to be cached.
 CharacterDefs charname get exec
 end
 end

Find the procedure for rendering the character and
execute it.

 } def
 /BuildChar load 0 3 dict put Local storage for the procedure ‘‘BuildChar.’’
 /UniqueID 1 def Create a unique identifier for the font.
end Done defining the font dictionary.

/BoxesAndBullets exch definefont pop Register the font; name it ‘‘BoxesAndBullets.’’

223

Program 20 / Creating an Analytic Font
(continued)

/bbfont /BoxesAndBullets findfont 16 scalefont def
/textfont /Times-Roman findfont 16 scalefont def

The remainder of this program illustrates the use of the
analytic font intermixed with one of the standard text
fonts.

/ss { 72 yline moveto show
 /yline yline 16 sub def } def

This procedure shows a string and then gets ready to
move down the page by one line.

/showbullettext
 { /bulletchar exch def

‘‘showbullettext’’ enables us to conveniently show the
same series of text but with different bullets each time.
A string containing the bullet character is passed as an
argument.

 bbfont setfont bulletchar ss Show the bullet character in the BoxesAndBullets font.
 textfont setfont Switch to the standard text font.
 (Every bullet has its billet. \261William III) show
 bbfont setfont bulletchar ss

Show the text immediately following the bullet. (Octal
character 261 is an endash.)

 textfont setfont
 (The bullet that will kill me is not yet cast.) show
 (\261Napoleon I) show
 bbfont setfont bulletchar ss
 textfont setfont
 (The ballot is stronger than the bullet.) show
 (\261Abraham Lincoln) show
 } def

/yline 650 def (a) showbullettext
/yline 550 def (b) showbullettext
/yline 450 def (c) showbullettext

Now show three series of statements, each series with a
different sized bullet.

/yline 300 def
textfont setfont
(Hieroglyphics are the root of letters. All) ss
(characters were originally signs and all) ss
(signs were once images. Human society,) ss
(the world, man in his entirety is in the) ss
(alphabet.) ss

This example shows a common use of the ‘‘openbox’’
character: as the marker at the end of a paragraph.

bbfont setfont
(d) show Place the ‘‘openbox’’ character at the end of the last

line.
showpage

1 inch
72 points

the tendency of the best

typography has been and

still should be in the path of

simplicity, legibility, and

orderly arrangement.

theodore low de vinne

225

Program 21 / Creating a Bitmap Font

This program demonstrates how to efficiently define an
entirely new font with bitmap character descriptions.

9 dict dup begin Allocate a dictionary for the font. Leave room for the
FID (fontID).

 /FontType 3 def FontType 3 indicates that this is a user defined font to
the POSTSCRIPT font machinery.

 /FontMatrix [1 0 0 1 0 0] def Use the identity matrix for the font coordinate system.
 /FontBBox [1.28 1.2 -0.16 -0.24] def If all the characters in the font were overlapped, this

would be the bounding box in the 1 unit character space.
 /Encoding 256 array def Allocate space for the encoding vector.
 0 1 255 {Encoding exch /.notdef put} for
 Encoding

Initialize all entries in the encoding vector with
‘‘.notdef’’.

 dup 97 /a put dup 105 /i put dup 116 /t put
 dup 98 /b put dup 108 /l put dup 117 /u put
 dup 99 /c put dup 109 /m put dup 118 /v put
 dup 100 /d put dup 110 /n put dup 119 /w put
 dup 101 /e put dup 111 /o put dup 121 /y put
 dup 102 /f put dup 112 /p put dup 32 /space put
 dup 103 /g put dup 114 /r put dup 46 /period put
 dup 104 /h put dup 115 /s put 44 /comma put

Encode the lowercase letters and a few of the
punctuation characters according to their ASCII
encodings (decimal rather than octal codes have been
used). Note that the lowercase letters j, k, q, x, and z are
not encoded since we do not define character
descriptions for them below (see ‘‘CharData’’
dictionary).

 /BuildChar
 { 0 begin

The procedure ‘‘BuildChar’’ is called every time a
character from this font must be constructed.

 /char exch def
 /fontdict exch def

The character code and the font dictionary are provided
as arguments to this procedure each time it’s called.

 /charname fontdict /Encoding get char get def Convert the character code to the corresponding name
by looking it up in the encoding vector.

 /charinfo fontdict /CharData get charname
 get def

Now retrieve the data for printing that character in the
‘‘CharData’’ dictionary.

 /wx charinfo 0 get def Find the width of that character.
 /charbbox charinfo 1 4 getinterval def Get the bounding box of the character.
 wx 0 charbbox aload pop setcachedevice Using the setcachedevice operator enables the

characters from this font to be cached.
 charinfo 5 get charinfo 6 get true Get the width and height of the bitmap; set the invert

boolean to true since the bitmaps specify the reverse
image.

 fontdict /imagemaskmatrix get
 dup 4 charinfo 7 get put
 dup 5 charinfo 8 get put

Insert the x and y translation components into the
general imagemask matrix.

 charinfo 9 1 getinterval cvx
 imagemask
 end
 } def

Get the hexadecimal string for printing the character in
the form of an array, convert it into an executable object
(procedure) and then print the bitmap image.

 /BuildChar load 0 6 dict put Create local storage for the procedure ‘‘BuildChar.’’

226

Program 21 / Creating a Bitmap Font
(continued)

 /imagemaskmatrix [25 0 0 -25 0 0] def This is a template imagemask transformation matrix
for this font. Since the bitmaps were designed to be 25
pixels from baseline to baseline and they are the same
resolution in the x and y directions, both the x and y
scale factors are 25. The y scale factor is negative
because the bitmap images are specified beginning with
the upper left corner rather than the lower left corner.
(See description of the imagemask operator in the
POSTSCRIPT Language Reference Manual.)

 /CharData 25 dict def
 CharData begin
 /a [.64 .04 0 .56 .56 13 14 -1.5 13.5
 <0F983FD870786038C018C018C018C01
 8C018C018603870783FD80F98>] def
 /b [.64 .04 0 .56 .76 13 19 -1.5 18.5
 <C000C000C000C000C000CF80DFE0F
 070E030C018C018C018C018C018C018
 E030F070DFE0CF80>] def
 /c [.6 .04 0 .52 .56 12 14 -1.5 13.5

The first number in the character description is the
width of the character in the 1 unit font space. The next
four numbers are the bounding box for the character in
the 1 unit font space. The next two numbers are the
width and height of the bitmap in pixels. The next two
numbers are the x and y translation values for the
transformation matrix provided to the imagemask
operator. The last entry in the description is the
hexadecimal string for printing the bitmap. (See below.)

 <0F803FE070706030C000C000C000C00
 0C000C000603070703FE00F80>] def
 /d [.64 .04 0 .56 .76 13 19 -1.5 18.5<001800180
 018001800180F983FD870786038C018C018
 C018C018C018C018603870783FD80F98>]def
 /e [.64 .04 0 .56 .56 13 14 -1.5 13.5
 <0F803FE070706030C018C018FFF8FFF
 8C000C000603070703FE00F80>] def
 /f [.32 0 0 .28 .76 7 19 -0.5 18.5 <0E1E3830
 30FEFE303030303030303030303030>] def
 /g [.64 .04 -0.16 .56 .56 13 18 -1.5 13.5<0F983F
 D870786038C018C018C018C018C018C018
 603870783FD80F98601870303FF00FC0>]def
 /h [.6 .04 0 .52 .76 12 19 -1.5 18.5
 <C000C000C000C000C000CF80DFE0F070
 E030C030C030C030C030C030C030C030C
 030C030C030>] def
 /i [.2 .04 0 .12 .76 2 19 -1.5 18.5 <C0C0C00000
 C0C0C0C0C0C0C0C0C0C0C0C0C0C0>] def
 /l [.2 .04 0 .12 .76 2 19 -1.5 18.5<C0C0C0C0C0
 C0C0C0C0C0C0C0C0C0C0C0C0C0C0>] def
 /m [.92 .04 0 .84 .56 20 14 -1.5 13.5
 <CF0780DFCFE0F0F870E07030C06030
 C06030C06030C06030C06030C06030
 C06030C06030C06030C06030>] def
 /n [.6 .04 0 .52 .56 12 14 -1.5 13.5

Description of Data: Since the lowercase ‘‘i’’ is a
relatively simple bitmap, it is used in this explanation.
The bitmap for the ‘‘i’’ is 2 pixels (samples) wide and
19 pixels high. In order to print the bitmap, a
hexadecimal string describing the pixel-image is
provided as the contents of the procedure argument to
the imagemask operator. Each pair of characters in the
hexadecimal string description of the ‘‘i’’ represents a
row of pixels; each row of the bitmap image should be
padded out to the next byte boundary to ensure proper
results. The matrix provided to the imagemask
operator describes how to map the unit square in user
space to the bitmap image space. The x and y translation
components vary from character to character and
indicate how many pixels to shift by so that the bitmap
is positioned properly within user space. The y
translation component will always be the height of the
bitmap minus any displacement factor (such as for
characters with descenders). The x component is usually
the equivalent of the left sidebearing of the character in
pixels. Note that both the x and y translation
components have half a pixel (.5) subtracted from their
original values. This is done to avoid round-off errors
induced by trying to position the bitmap image right on
a device pixel boundary.

 <CF80DFE0F070E030C030C030C030C0

227

Program 21 / Creating a Bitmap Font
(continued)

 30C030C030C030C030C030C030>] def
 /o [.64 .04 0 .56 .56 13 14 -1.5 13.5
 <0F803FE070706030C018C018C018C0
 18C018C018603070703FE00F80>] def
 /p [.64 .04 -.16 .56 .56 13 18 -1.5 13.5<CF80DF
 E0F070E030C018C018C018C018C018C018E
 030F070DFE0CF80C000C000C000C000>]def
 /r [.32 .04 0 .28 .56 6 14 -1.5 13.5 <DCFCE0
 C0C0C0C0C0C0C0C0C0C0C0>] def
 /s [.36 0 0 .32 .56 8 14 -0.5 13.5
 <3C7EC3C3C0E0781E0703C3C37E3C>] def
 /t [.36 0 0 .32 .76 8 19 -0.5 18.5 <1818181818
 FFFF181818181818181818181818>] def
 /u [.6 .04 0 .52 .56 12 14 -1.5 13.5
 <C030C030C030C030C030C030C030C0
 30C030C030C070E0F07FB01F30>] def
 /v [.48 0 0 .44 .56 11 14 -0.5 13.5
 <C060C060C06060C060C060C0318031
 8031801B001B001B000E000E00>] def
 /w [.88 0 0 .84 .56 21 14 -0.5 13.5
 <C07018C07018C0701860D83060D830
 60D830318C60318C60318C601B06C0
 1B06C01B06C00E03800E0380>] def
 /y [.48 0 -.16 .44 .56 11 18 -.5 13.5<C060C060
 C06060C060C060C03180318031801B001B
 001F000600060006000C000C000C00>]def
 /period [.28 .08 0 .16 .12 2 3 -2.5 2.5
 <C0C0C0>] def
 /comma [.32 0 -0.08 .2 .08 5 4 -0.5 1.5
 <183060C0>] def
 /space [.24 0 0 0 0 1 1 0 0 <>] def
 /.notdef [.24 0 0 0 0 1 0 0 <>] def
 end Pop the ‘‘CharData’’ dictionary.
 /UniqueID 2 def Create a unique identifier for the font.
end Done specifying the information required for the font.
/Bitfont exch definefont pop Register the font and name it ‘‘Bitfont.’’

/Bitfont findfont 12 scalefont setfont
72 500 moveto (the tendency of the best) show
72 488 moveto (typography has been and) show
72 476 moveto (still should be in the path of) show
72 464 moveto (simplicity, legibility, and) show
72 452 moveto (orderly arrangement.) show

The following lines illustrate the bitmap font in use.

/Bitfont findfont 8 scalefont setfont
72 436 moveto (theodore low de vinne) show

Just like any other POSTSCRIPT font, the bitmap font can
be scaled to any size.

showpage

FOR FURTHER REFERENCE

Adobe Systems, Inc. POSTSCRIPT Language Reference Manual.
Addison-Wesley, Reading, Massachusetts, 1985.

Foley, James D. and Van Dam, Andries. Fundamentals of Inter-
active Computer Graphics. Addison-Wesley, Reading, Massa-
chusetts, 1982.

IBM System/360: Priciples of Operation, Ninth Edition, Novem-
ber 1970.

Newman, William M. and Sproull, Robert F. Principles of Inter-
active Computer Graphics. McGraw-Hill, New York, 1979.

Pratt, Terrence W. Programming Languages: Design and
Implementation. Prentice-Hall, Inc., Englewood Cliffs, N.J.,
1975.

Warnock, John and Wyatt, Douglas. ‘‘A Device Independent
Graphics Imaging Model for Use with Raster Devices,’’
Computer Graphics Volume 16, Number 3, July 1982, pp.
313-320.

229

QUOTATIONS

page 180: Daniel Berkeley Updike Printing Types: Their History, Forms,
& Use Cambridge (Mass.) 1951, Vol. II, pp. 274-275.

page 158: John C. Tarr Design in Typography London, 1951, p.21.

page 172: Woody Allen Interview by Time Magazine April 30, 1979

page 212: Valter Falk, Stockholm. Manuale Typographicum Frankfurt am
Main 1954, p.34.

page 220: William III from John Wesley, Journal June 6, 1765

page 220: Napoleon I at Montereau February 17, 1814

page 220: Abraham Lincoln Speech at Bloomington, Illinois May 19, 1856

page 220: Victor Hugo in France et Belgique - Alpes et Pyrenees - Voyages
et Excursions Paris 1910, pp. 215-216.

page 224: Theodore Low De Vinne A Treatise of Title Pages New York
1902, p.439.

231

APPENDIX

OPERATOR SUMMARY

Operand stack manipulation operators

any pop – discard top element
any any exch any any exchange top two elements1 2 2 1

any dup any any duplicate top element
any ..any n copy any ..any any ..any duplicate top n elements1 n 1 n 1 n
any ..any n index any ..any any duplicate arbitrary elementn 0 n 0 n

a ..a n j roll a ..a a ..a roll n elements up j timesn−1 0 (j−1) mod n 0 n−1 j mod n⊥

any ..any clear

⊥

discard all elements1 n⊥

any ..any count

⊥

any ..any n count elements on stack1 n 1 n
– mark mark push mark on stack

mark obj ..obj cleartomark – discard elements down through mark1 n
mark obj ..obj counttomark mark obj ..obj n count elements down to mark1 n 1 n

Arithmetic and math operators

num num add sum num plus num1 2 1 2
num num div quotient num divided by num1 2 1 2

int int idiv quotient integer divide1 2
int int mod remainder int mod int1 2 1 2

num num mul product num times num1 2 1 2
num num sub difference num minus num1 2 1 2

num abs num absolute value of num1 2 1
num neg num negative of num1 2 1
num ceiling num ceiling of num1 2 1
num floor num floor of num1 2 1
num round num round num to nearest integer1 2 1
num truncate num remove fractional part of num1 2 1
num sqrt real square root of num

num den atan angle arctangent of num/den in degrees

233

angle cos real cosine of angle (degrees)
angle sin real sine of angle (degrees)

base exponent exp real raise base to exponent power
num ln real natural logarithm (base e)
num log real logarithm (base 10)

– rand int generate pseudo-random integer
int srand – set random number seed
– rrand int return random number seed

Array operators

int array array create array of length int
– [mark start array construction

mark obj ..obj] array end array construction0 n-1
array length int number of elements in array

array index get any get array element indexed by index
array index any put – put any into array at index

array index count getinterval subarray subarray of array starting at index for count
elements

array index array putinterval – replace subarray of array starting at index1 2 1
by array2

array aload a ..a array push all elements of array on stack0 n−1
any ..any array astore array pop elements from stack into array0 n−1

array array copy subarray copy elements of array to initial subarray of1 2 2 1
array2

array proc forall – execute proc for each element of array

Dictionary operators

int dict dict create dictionary with capacity for int ele-
ments

dict length int number of key-value pairs in dict
dict maxlength int capacity of dict
dict begin – push dict on dict stack

– end – pop dict stack
key value def – associate key and value in current dict

key load value search dict stack for key and return associ-
ated value

key value store – replace topmost definition of key
dict key get any get value associated with key in dict

dict key value put – associate key with value in dict
dict key known bool test whether key is in dict

key where dict true
or false find dict in which key is defined

dict dict copy dict copy contents of dict to dict1 2 2 1 2
dict proc forall – execute proc for each element of dict

– errordict dict push errordict on operand stack
– systemdict dict push systemdict on operand stack
– userdict dict push userdict on operand stack

234 Appendix: OPERATOR SUMMARY

– currentdict dict push current dict on operand stack
– countdictstack int count elements on dict stack

array dictstack subarray copy dict stack into array

String operators

int string string create string of length int
string length int number of elements in string

string index get int get string element indexed by index
string index int put – put int into string at index

string index count getinterval substring substring of string starting at index for count
elements

string index string putinterval – replace substring of string starting at index1 2 1
by string2

string string copy substring copy elements of string to initial substring1 2 2 1
of string2

string proc forall – execute proc for each element of string
string seek anchorsearch post match true

or string false determine if seek is initial substring of string
string seek search post match pre true

or string false search for seek in string
string token post token true

or false read token from start of string

Relational, boolean, and bitwise operators

any any eq bool test equal1 2
any any ne bool test not equal1 2

num |str num |str ge bool test greater or equal1 1 2 2
num |str num |str gt bool test greater than1 1 2 2
num |str num |str le bool test less or equal1 1 2 2
num |str num |str lt bool test less than1 1 2 2
bool |int bool |int and bool |int logical | bitwise and1 1 2 2 3 3

bool |int not bool |int logical | bitwise not1 1 2 2
bool |int bool |int or bool |int logical | bitwise inclusive or1 1 2 2 3 3
bool |int bool |int xor bool |int logical | bitwise exclusive or1 1 2 2 3 3

– true true push boolean value true
– false false push boolean value false

int shift bitshift int bitwise shift of int (positive is left)1 2 1

Control operators

any exec – execute arbitrary object
bool proc if – execute proc if bool is true

bool proc proc ifelse – execute proc if bool is true, proc if bool is1 2 1 2
false

init incr limit proc for – execute proc with values from init by steps
of incr to limit

int proc repeat – execute proc int times
proc loop – execute proc an indefinite number of times

235

– exit – exit innermost active loop
– stop – terminate stopped context

any stopped bool establish context for catching stop
– countexecstack int count elements on exec stack

array execstack subarray copy exec stack into array
– quit – terminate interpreter
– start – executed at interpreter startup

Type, attribute, and conversion operators

any type name return name identifying any’s type
any cvlit any make object be literal
any cvx any make object be executable
any xcheck bool test executable attribute

array|file|string executeonly array|file|string reduce access to execute-only
array|dict|file|string noaccess array|dict|file|string disallow any access
array|dict|file|string readonly array|dict|file|string reduce access to read-only
array|dict|file|string rcheck bool test read access
array|dict|file|string wcheck bool test write access

num|string cvi int convert to integer
string cvn name convert to name

num|string cvr real convert to real
num radix string cvrs substring convert to string with radix

any string cvs substring convert to string

File operators

string string file file open file identified by string with access1 2 1
string2

file closefile – close file
file read int true

or false read one character from file
file int write – write one character to file

file string readhexstring substring bool read hex from file into string
file string writehexstring – write string to file as hex
file string readstring substring bool read string from file
file string writestring – write characters of string to file
file string readline substring bool read line from file into string

file token token true
or false read token from file

file bytesavailable int number of bytes available to read
– flush – send buffered data to standard output file

file flushfile – send buffered data or read to EOF
file resetfile – discard buffered characters
file status bool return status of file

string run – execute contents of named file
– currentfile file return file currently being executed

string print – write characters of string to standard output
file

236 Appendix: OPERATOR SUMMARY

any = – write text representation of any to standard
output file

⊥

any .. any stack

⊥

any .. any print stack nondestructively using =1 n 1 n
any == – write syntactic representation of any to

standard output file

⊥

any .. any pstack

⊥

any .. any print stack nondestructively using ==1 n 1 n
– prompt – executed when ready for interactive input

bool echo – turn on/off echoing

Virtual memory operators

– save save create VM snapshot
save restore – restore VM snapshot

– vmstatus level used maximum report VM status

Miscellaneous operators

proc bind proc replace operator names in proc by
operators

– null null push null on operand stack
– usertime int return time in milliseconds
– version string interpreter version

Graphics state operators

– gsave – save graphics state
– grestore – restore graphics state
– grestoreall – restore to bottommost graphics state
– initgraphics – reset graphics state parameters

num setlinewidth – set line width
– currentlinewidth num return current line width

int setlinecap – set shape of line ends for stroke (0=butt,
1=round, 2=square)

– currentlinecap int return current line cap
int setlinejoin – set shape of corners for stroke (0=miter,

1=round, 2=bevel)
– currentlinejoin int return current line join

num setmiterlimit – set miter length limit
– currentmiterlimit num return current miter limit

array offset setdash – set dash pattern for stroking
– currentdash array offset return current dash pattern

num setflat – set flatness tolerance
– currentflat num return current flatness

num setgray – set color to gray value from 0 (black) to 1
(white)

– currentgray num return current gray
hue sat brt sethsbcolor – set color given hue, saturation, brightness

– currenthsbcolor hue sat brt return current color hue, saturation, bright-
ness

red green blue setrgbcolor – set color given red, green, blue

237

– currentrgbcolor red green blue return current color red, green, blue
freq angle proc setscreen – set halftone screen

– currentscreen freq angle proc return current halftone screen
proc settransfer – set gray transfer function

– currenttransfer proc return current transfer function

Coordinate system and matrix operators

– matrix matrix create identity matrix
– initmatrix – set CTM to device default

matrix identmatrix matrix fill matrix with identity transform
matrix defaultmatrix matrix fill matrix with device default matrix
matrix currentmatrix matrix fill matrix with CTM
matrix setmatrix – replace CTM by matrix

t t translate – translate user space by (t , t)x y x y
t t matrix translate matrix define translation by (t , t)x y x y

s s scale – scale user space by s and sx y x y
s s matrix scale matrix define scaling by s and sx y x y

angle rotate – rotate user space by angle degrees
angle matrix rotate matrix define rotation by angle degrees

matrix concat – replace CTM by matrix × CTM
matrix matrix matrix concatmatrix matrix fill matrix with matrix × matrix1 2 3 3 3 1 2

x y transform x′ y′ transform (x, y) by CTM
x y matrix transform x′ y′ transform (x, y) by matrix

dx dy dtransform dx′ dy′ transform distance (dx, dy) by CTM
dx dy matrix dtransform dx′ dy′ transform distance (dx, dy) by matrix

x′ y′ itransform x y inverse transform (x′, y′) by CTM
x′ y′ matrix itransform x y inverse transform (x′, y′) by matrix

dx′ dy′ idtransform dx dy inverse transform distance (dx′, dy′) by
CTM

dx′ dy′ matrix idtransform dx dy inverse transform distance (dx′, dy′) by
matrix

matrix matrix invertmatrix matrix fill matrix with inverse of matrix1 2 2 2 1

Path construction operators

– newpath – initialize current path to be empty
– currentpoint x y return current point coordinate

x y moveto – set current point to (x, y)
dx dy rmoveto – relative moveto

x y lineto – append straight line to (x, y)
dx dy rlineto – relative lineto

x y r ang ang arc – append counterclockwise arc1 2
x y r ang ang arcn – append clockwise arc1 2

x y x y r arcto xt yt xt yt append tangent arc1 1 2 2 1 1 2 2
x y x y x y curveto – append Bezier cubic section1 1 2 2 3 3

dx dy dx dy dx dy rcurveto – relative curveto1 1 2 2 3 3
– closepath – connect subpath back to its starting point

238 Appendix: OPERATOR SUMMARY

– flattenpath – convert curves to sequences of straight
lines

– reversepath – reverse direction of current path
– strokepath – compute outline of stroked path

string bool charpath – append character outline to current path
– clippath – set current path to clipping path
– pathbbox ll ll ur ur return bounding box of current pathx y x y

move line curve close pathforall – enumerate current path
– initclip – set clip path to device default
– clip – establish new clipping path
– eoclip – clip using even-odd inside rule

Painting operators

– erasepage – paint current page white
– fill – fill current path with current color
– eofill – fill using even-odd rule
– stroke – draw line along current path

width height bits/sample matrix proc image – render sampled image onto current page
width height invert matrix proc imagemask – render mask onto current page

Device setup and output operators

– showpage – output and reset current page
– copypage – output current page

matrix width height proc banddevice – install band buffer device
matrix width height proc framedevice – install frame buffer device

– nulldevice – install no-output device
proc renderbands – enumerate bands for output to device

Character and font operators

key font definefont font register font as a font dictionary
key findfont font return font dict identified by key

font scale scalefont font′ scale font by scale to produce new font′
font matrix makefont font′ transform font by matrix to produce new

font′
font setfont – set font dictionary

– currentfont font return current font dictionary
string show – print characters of string on page

a a string ashow – add (a , a) to width of each char whilex y x y
showing string

c c char string widthshow – add (c , c) to width of char while showingx y x y
string

c c char a a string awidthshow – combined effects of ashow and widthshowx y x y
proc string kshow – execute proc between characters shown

from string
string stringwidth w w width of string in current fontx y

– FontDirectory dict dictionary of font dictionaries
– StandardEncoding array standard font encoding vector

239

Font cache operators

– cachestatus bsize bmax msize mmax csize cmax blimit
return cache status and parameters

w w ll ll ur ur setcachedevice – declare cached character metricsx y x y x y
w w setcharwidth – declare uncached character metricsx y
num setcachelimit – set max bytes in cached character

Errors

dictfull no more room in dictionary
dictstackoverflow too many begins
dictstackunderflow too many ends
execstackoverflow exec nesting too deep
handleerror called to report error information
interrupt external interrupt request (e.g., control-C)
invalidaccess attempt to violate access attribute
invalidexit exit not in loop
invalidfileaccess unacceptable access string
invalidfont invalid font name or dict
invalidrestore improper restore
ioerror input/output error occurred
limitcheck implementation limit exceeded
nocurrentpoint current point is undefined
rangecheck operand out of bounds
stackoverflow operand stack overflow
stackunderflow operand stack underflow
syntaxerror syntax error in POSTSCRIPT program text
timeout time limit exceeded
typecheck operand of wrong type
undefined name not known
undefinedfilename file not found
undefinedresult over/underflow or meaningless result
unmatchedmark expected mark not on stack
unregistered internal error
VMerror VM exhausted

240 Appendix: OPERATOR SUMMARY

Index

% comment character 24 Built-in fonts 201
Bullet character 221

.notdef 201, 209, 218, 221, 225
Cap height 156, 159, 222

== 13, 15 ceiling 10
Character 155

[86 bounding box 155
composite 202, 213

] 86 encoding 202
Character code 94, 167, 209, 222

Accented characters 202, 213 convert 167
add 4, 9, 10, 15, 62 octal 94, 209
Algol 130 Character encoding 91
aload 83, 84, 86 Character operators 46, 100
and 62 Character widths
Apple LaserWriter 119, 193, 217 changing 217

setscreen limitations 193 rounded 202
font metrics problem 217 charpath 97, 98, 99, 100, 102, 159, 163
interactive use 119 Circles 55
preparing 119 Circular arcs 53

arc 53, 54, 60, 129, 135, 149 printing text around 169
arcn 54, 60 clear 12, 15
Arcs clip 101, 102, 110, 185

elliptical 139 Clipping boundary 185
arcto 56, 57, 58, 60 Clipping path 3, 101
Arithmetic 8, 10 closepath 21, 25, 52, 149, 174
array 77, 86 Closepath
Array index 78 implicit 141
Array operators 78, 86 Comments 24
Arrays 61, 77 Comparison operators 62

executable 61, 65, 67, 133 Composite characters 202, 213
Arrows Composite objects 78

drawing 143 concatmatrix 194
ASCII 5, 91, 181, 225 Conditional operators 65
ashow 87 Control operators 60, 76
astore 83, 86 Conversion operators 76
awidthshow 87 Coordinate system 3, 47, 98, 207

current 56, 68
begin 130 default 135
Binary image 113 device 47
Bitmap font 225 font 225
Bitmap pattern 193 mirror image 194
Bitmaps 113 stroke width 207
bitshift 196 user 3, 47, 95, 137, 139, 143
Boolean object 65 Coordinate systems operators 60
Bounding box 155, 159, 163, 221 Coordinate transformations
BuildChar 200, 222, 225 nested 135

241

copypage 185 exch 11, 12, 15
Current coordinate system 56, 68 Executable arrays 65, 67, 133
Current dictionary 28, 29, 130 executive 120
Current font 36, 37, 41, 68, 84, 91, 155, 156, 39 exit 67, 69, 71, 76, 181
Current page 2, 17, 68, 91, 93, 95, 97 exp 10
Current path 2, 18, 19, 20, 23, 51, 159, 163, 173, 189
Current point 18, 19, 20, 24 FID 199, 205, 209, 213, 217, 221, 225
Current transformation matrix 95, 137 fill 22, 23, 25, 32, 51, 53, 99, 129, 135, 141, 177
currentfile 151, 153 findfont 37, 44, 46, 209, 217
currentmatrix 137, 139, 143, 194 flattenpath 149, 159, 163, 173, 174
currentpoint 52, 60, 72, 159, 175 Font 35, 36, 199
currenttransfer 153 anamorphic scale 155, 156
Curves 53 bitmap 225
curveto 53, 149, 159, 163, 174 character widths 217
cvrs 211 condensed 96
cvs 72, 73, 76 coordinate system 225
cvx 225 creating a new 200

creating an analytic 221
Dash array 106 current 36, 37, 41, 68, 84, 91, 155, 156, 39
Dash offset 106 expanded 96
Dash patterns modifying existing 199

centered 147 obliqued 97
Data types 5 outline 205
def 28, 29, 33, 44, 62, 130, 139 re-encoding 209
Default user space 47, 193 transformation matrix 95
defaultmatrix 193 user defined 200, 225
definefont 199, 200, 205, 209, 213, 217 Font dictionary 36, 37, 44, 91, 95, 96, 97, 199, 200, 201, 202, 222
Device coordinate system 47 Font operators 46, 100
Device independence 193 Font transformations 94
Device space 3, 47, 202, 217, 218 FontBBox 200, 217
dict 130 FontDirectory 37, 217
Dictionary 5, 130 FontMatrix 200, 221

create a new 132 FontName 200, 217
current 28, 29, 130 FontType 200
font 36, 37, 44, 91, 95, 96, 97, 200, 201, 202, 222 for 67, 68, 69, 76, 80, 98, 103, 135
system 27 forall 69, 81, 83, 86, 167, 190
user 27 FORTH 4

Dictionary operators 33 Fractions 156, 163
Dictionary stack 27, 130, 131, 139 setting 163
div 10, 11, 15
dtransform 193, 219 ge 62, 76
dup 12, 15, 78 Geometric figures 1

get 78, 79, 83, 86
EBCDIC 201, 209, 210, 211 getinterval 181, 225
Ellipses 55, 139 Graphics 41
Elliptical arcs 139 Graphics objects 1
Encoding 200 types 1

character 202 Graphics operators 1, 47
vector 201 Graphics output operators 117

Encoding accented characters 202 Graphics state 50, 51
Encoding vector 201, 221, 225 saving 51

making small changes 213 Graphics state operators 60, 110
re-encoding 209 Graphics state stack 51

eq 62, 67, 76 grestore 51, 53, 60, 99, 135, 137, 139, 159, 189
erasepage 185 gsave 51, 53, 60, 74, 99, 135, 137, 139, 159, 189
Error tolerance 219 gt 62, 76

242 INDEX

Halftone 177 Mitered joins 105
Halftone screen 177, 193, 195 mod 10, 15, 67

angle 193 moveto 18, 19, 20, 21, 23, 25, 37, 40, 41, 45, 149, 174
cell 195 mul 10, 15
frequency 193
spot function 193 ne 62, 76

Hexadecimal characters 197 neg 10
Hexadecimal string 113, 151, 225 newpath 18, 19, 25, 32
Hexadecimal string notation 197 not 62

notdef 201, 209, 218, 221, 225
idiv 10, 15 null 78
if 62, 75, 76 Null objects 78
ifelse 65, 67, 76
image 111, 112, 113, 114, 115, 117, 130, 151, 153, 200 Objects
imagemask 225, 226 composite 78
Images Octal codes 92, 94, 215

printing 151 Operand stack 159, 194, 217, 218
Imaging model 2 Operands 4, 9
Inch 29, 31 Operators 8, 9, 10, 12
initgraphics 185 arithmetic 10
Interactive mode array 78, 86

leaving 121 character 46, 100
using 120 comparison 62

Interactive operators 15 conditional 65
invalidfont 200 control 60, 76
itransform 189 conversion 76

coordinate systems 60
Kerning 88 dictionary 33
Key 29, 44, 130, 133 font 46, 100
kshow 87, 88, 90, 100 graphics output 117

graphics state 60, 110
Labeling graphs and illustrations 156 interactive 12, 15
LaserWriter math 15

See Apple LaserWriter output 25
le 62, 71, 76 painting 25
length 79, 83, 86 path construction 25, 60, 100
limitcheck 193 polymorphic 13, 83, 86, 117
Line breaking algorithm 181 relational 76
Line drawing 104 stack 12, 15, 86
Lines string 76

expanded and constant width 137 or 62
lineto 18, 19, 20, 24, 25, 149, 174 Output device
Literal 28 coordinate system 3
loop 67, 69, 76, 181 Output operators 25
Loops 67, 81
lt 62, 76 Page description 1

Painting operators 2, 25
Macintosh 119 PaintType 205
MacTerminal 119, 120 Pascal 130
makefont 95, 97, 100, 155, 156, 159, 163 Path 17
mark 86 computing the length of 149
Mark 5, 78 placing text along an arbitrary 173
Math operators 15 Path construction operators 25, 60, 100
Metrics 217 Path operators 3
Mirror image 194 pathbbox 159, 163
Miter limit 105, 106, 189 pathforall 149, 173, 174

243

Pattern-fill 177 roll 12, 15
Patterns rotate 49, 60, 95, 129, 139, 170

filling an area with 193
Picture element 111 Sampled images 2
Pie chart scale 49, 60, 95, 97, 115, 129, 137

drawing 189 Scale factor 159
Pixel 111, 113, 115, 195, 202, 217, 218, 226 scalefont 37, 39, 44, 46
Point sizes 38 Screen
Polymorphic operators 83, 86, 117 halftone 177
pop 12, 15, 57, 84 search 177, 181
Poster 185 setcachedevice 200, 222, 225
Postfix notation 4 setcharwidth 200
POSTSCRIPT 1 setdash 106, 107, 109, 110, 130, 147

as a programming language 4 setfont 37, 39, 44, 45, 46
data types 5 setgray 22, 25, 67, 190, 196, 200
Imaging model 2 setlinecap 104, 105, 110
operators 8, 9 setlinejoin 105, 110
page description 1 setlinewidth 21, 25, 104
painting operators 2 setmatrix 97, 137, 139, 143
path operators 3 setmiterlimit 106, 110, 189
stack 4, 7 setrgbcolor 200

POSTSCRIPT arrays 77 setscreen 193, 194
POSTSCRIPT fonts 35, 36 settransfer 151, 153, 196
POSTSCRIPT images Shapes

overlapping 23 repeated 135
POSTSCRIPT interpreter 8, 27, 61, 120, 126, 130, 153, 200 show 37, 40, 46, 73, 87, 169, 202
POSTSCRIPT language 125 showpage 19, 25, 53, 185

programming example 125 sin 10
POSTSCRIPT object 44 Small caps 155, 159
POSTSCRIPT objects 7 printing 159

delimiters of 8 Spot function 193
Printing sqrt 10

fractions 163 Stack 4, 7, 12, 130
graphics 41 dictionary 27, 130, 131, 139
small caps 159 graphics state 51
text 35, 41 operand 159, 167, 194, 217, 218
typefaces 39 Stack notation 9

Procedure 61 Stack operators 15, 86
Procedures 29, 30, 32 Standard encoding 91, 201

concatenating 151 string 72, 76
defining 32 String

pstack 13, 15 character code 167
put 78, 83, 86, 92, 93 hexadecimal 151, 225
putinterval 117 String index 93

String objects 35
quit 121 String operators 76

stringwidth 45, 46, 64, 170, 175, 177, 181, 218
Re-encoding a font 209 stroke 19, 20, 24, 25, 53, 99, 104, 129, 137, 141
readhexstring 151, 153 Stroke width 207
Recursion 71 StrokeWidth 205
Recursive graphics 73 sub 4, 9, 10, 11, 15
Relational operators 76 System dictionary 27
repeat 52, 56, 60, 61, 62, 67, 69
Resolution 193, 219 Text 1, 41
rlineto 19, 24, 25 along an arbitrary path 173
rmoveto 20, 25 circular 169

244 INDEX

vertical 167
Transfer function 151, 153
transform 174, 175, 189
Transformation matrix 94, 95, 226

imagemask 226
current 95, 137
font 95

translate 47, 48, 60, 95, 139, 171, 185
Translation 47
Typeface 35, 39, 83, 155

x-height 155
Typeface family 35
Typesetting 155
Typography 155

UniqueID 200, 205, 217
Unit square 151
User coordinate system 47, 95, 137, 139, 143
User dictionary 27
User space 3, 4, 47, 151, 167

default 47, 193, 219
translating 47

Variables 28, 30, 44, 130
local 130, 139

Widths
changing 217

widthshow 87
Word break 181

x-height 155, 156, 159
xor 62

245

Colophon

Camera-ready copy for this book was created entirely with
POSTSCRIPT and printed on a Linotron 101 at Adobe Systems
Incorporated. The book was created with the aid of the Scribe
Document Production System (a product of UNILOGIC, Ltd.) as a
Scribe document definition. The illustrations were POSTSCRIPT

program segments which Scribe integrated and placed on the
pages along with the formatted text portions.

Successive drafts of the book were processed with Scribe, each
time generating a single POSTSCRIPT print file. The book was
proofed when needed by printing the file on an Apple
LaserWriter POSTSCRIPT printer. The final version was printed
without modification on a Linotype Linotron 101 typesetter and
delivered to Addison-Wesley. No manual paste-up of any kind
was required.

The typefaces used in this book were digitized by Adobe
Systems Incorporated. The body type is Times Roman with
Italic, Bold, and Bold Italic. The titles and examples are in
Helvetica with Bold, Oblique, and Bold Oblique. The fixed
width font used in some example output is Courier. Adobe’s
Symbol font is also featured.

247

	Cover Page
	Table of Contents
	Preface
	Ch1: Introduction
	Ch2: Stack and Arithmetic
	Ch3: Beginning Graphics
	Ch4: Procedures and Variables
	Ch5: Printing Text
	Ch6: More Graphics
	Ch7: Loops and Conditionals
	Ch8: Arrays
	Ch9: More Fonts
	Ch10: Circular Text
	Ch11: Images
	Ch12: PostScript Printers
	Introduction to Cookbook
	Programs 1-6: Basic Graphics
	Programs 7-12: Printing Text
	Programs 12-15: Applications
	Prog.s 16-21: Modifying and Creating Fonts
	Reference
	Quotations
	Operator Summary
	Index
	Colophon

