Chapter 7 Three-Dimensional Viewing

Myung-Soo Kim
Seoul National University
http://cse.snu.ac.kr/mskim
http://3map.snu.ac.kr

3D Viewing Pipeline

FIGURE 7-11 General three-dimensional transformation pipeline, from modeling coordinates to world coordinates to viewing coordinates to projection coordinates to normalized coordinates and, ultimately, to device coordinates.

3D Viewing Parameters

FIGURE 7-13 Orientation of the view plane and view-plane normal vector **N**.

FIGURE 7-16 Adjusting the input direction of the view-up vector **V** to an orientation perpendicular to the view-plane normal vector **N**.

FIGURE 7-15 Specifying the view-plane normal vector \mathbf{N} as the direction from a selected reference point \mathbf{P}_{ref} to the viewing-coordinate origin \mathbf{P}_0 .

$$\mathbf{n} = \frac{\mathbf{N}}{|\mathbf{N}|} = (n_x, n_y, n_z)$$

$$\mathbf{u} = \frac{\mathbf{V} \times \mathbf{n}}{|\mathbf{V}|} = (u_x, u_y, u_z)$$

$$\mathbf{v} = \mathbf{n} \times \mathbf{u} = (v_x, v_y, v_z)$$

$$\mathbf{u} = \frac{\mathbf{V} \times \mathbf{n}}{|\mathbf{V} \times \mathbf{n}|} = (u_x, u_y, u_z)$$

FIGURE 7-17 A right-handed viewing system defined with unit vectors **u**, **v**, and **n**.

3D Projections

FIGURE 7-22 Parallel projection of a line segment onto a view plane.

FIGURE 7-23 Perspective projection of a line segment onto a view plane.

FIGURE 7-25 An isometric projection of a cube.

2' 4' 8' 8' View Plane

FIGURE 7-24 views.

Orthogonal Projection

Orthogonal Projection

Orthogonal Projection

FIGURE 7–30 A left-handed screen-coordinate reference frame.

FIGURE 7-31

Normalization transformation from an orthogonal-projection view volume to the symmetric normalization cube within a left-handed reference frame.

Oblique Parallel Projection

View Plane (b)

Oblique Parallel Projection

FIGURE 7-35 Cavalier projections of a cube onto a view plane for two values of angle ϕ . The depth of the cube is projected with a length equal to that of the width and height.

FIGURE 7–36 Cabinet projections of a cube onto a view plane for two values of angle ϕ . The depth is projected with a length that is one half that of the width and height of the cube.

Oblique Parallel Projection

FIGURE 7-39 Top view of an oblique parallel-projection transformation. The oblique view volume is converted into a rectangular parallelepiped, and objects in the view volume, such as the green block, are mapped to orthogonal-projection coordinates.

vanishing points for perspective-projection views of a cube. When the cube in (a) is projected to a view plane that intersects only the z axis, a single vanishing point in the z direction (b) is generated. When the cube is projected to a view plane that intersects both the z and x axes, two vanishing points (c) are produced.

FIGURE 7-51 A

symmetric frustum view volume is mapped to an orthogonal parallelepiped by a perspective-projection transformation.

3D Clipping Algorithms

FIGURE 7-57 Values for the three-dimensional, six-bit region code that identifies spatial positions relative to the boundaries of a view volume.

FIGURE 7-56 A possible ordering for the view-volume clipping boundaries corresponding to the region-code bit positions.

011001	011000	011010
010001	010000	010010
010101	010100	010110

Region Codes In Front of Near Plane (a)

001001	001000	001010
000001	000000	000010
000101	000100	000110

(a)

Region Codes Between Near and Far Planes (b)

101001	101000	101010
100001	100000	100010
100101	100100	100110

Region Codes Behind Far Plane (c)

3D Clipping Algorithms

3D Polygon Clipping

FIGURE 7-59

Three-dimensional object clipping. Surface sections that are outside the view-volume clipping planes are eliminated from the object description, and new surface facets may need to be constructed.