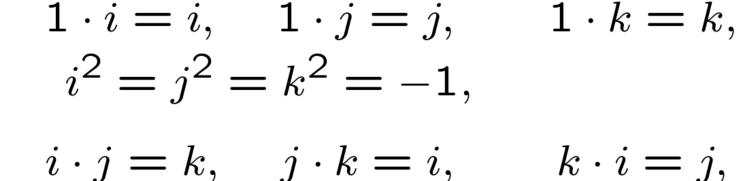
Unit Quaternion and 3D Rotations

Myung-Soo Kim Seoul National University

Quaternions



 $j \cdot i = -k, \quad k \cdot j = -i, \qquad k \cdot i = -j,$ $j \cdot i = -k, \quad k \cdot j = -i, \qquad i \cdot k = -j.$

q = w + xi + yj + zk,

where w, x, y, z are real numbers.

Addition and Multiplication

For
$$q_1 = (w_1, x_1, y_1, z_1), q_2 = (w_2, x_2, y_2, z_2),$$

 $q_1 + q_2 = (w_1 + w_2, x_1 + x_2, y_1 + y_2, z_1 + z_2),$
 $q_1 \cdot q_2 = (w_1 w_2 - \langle (x_1, y_1, z_1), (x_2, y_2, z_2) \rangle,$
 $w_1(x_2, y_2, z_2) + w_2(x_1, y_1, z_1)$
 $+ (x_1, y_1, z_1) \times (x_2, y_2, z_2)),$

where $\langle *, * \rangle$ means the inner product.

Unit Quaternion

For
$$q = (w, x, y, z) \in S^3$$
, $w^2 + x^2 + y^2 + z^2 = 1$,
 $q = (w, x, y, z) = (\cos \theta, \sin \theta(a, b, c)) \in S^3$,

where

$$(a, b, c) = \frac{(x, y, z)}{\sqrt{x^2 + y^2 + z^2}} \in S^2,$$

$$\theta = \arctan\left(\frac{\sqrt{x^2 + y^2 + z^2}}{w}\right).$$

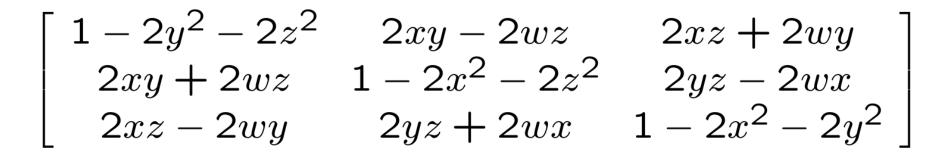
3D Rotation

For a 3D point $(\alpha, \beta, \gamma) \in R^3$, a unit quaternion $q = (w, x, y, z) \in S^3$, and its conjugate $\overline{q} = (w, -x, -y, -z) \in S^3$,

$$q \cdot (0, \alpha, \beta, \gamma) \cdot \overline{q} = (0, \overline{\alpha}, \overline{\beta}, \overline{\gamma}),$$

is the result of rotating (α, β, γ) by angle 2θ about the axis parallel to (a, b, c).

The 3D Rotation Matrix



- 1. Each row is a unit vector, and each column is a unit vector.
- 2. Rows are mutually orthogonal each other, and columns are mutually orthogonal each other.
- 3. The determinant of R_q is 1.

Some Properties

1. $R_{-q} = R_q$.

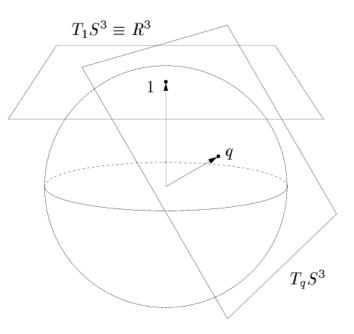
2. If $q_1, q_2 \in S^3$, then $q_2 \cdot q_1 \in S^3$.

3. $R_{q_2}R_{q_1} = R_{q_2 \cdot q_1}$.

Quaternion Calculus

Given $q(t) \in S^3$, $q'(t) = (0, v(t)) \cdot q(t)$,

for some $v(t) \in \mathbb{R}^3$.



Angular Velocity

The rotated point $p(t) = R_{q(t)}(p)$ is in a sphere with radius ||p|| and center (0, 0, 0):

$$(0, p(t)) = q(t) \cdot (0, p) \cdot \overline{q(t)}.$$

Differentiating the above, we get

$$(0, p'(t)) = (0, 2v(t)) \cdot (0, p(t)) = (0, 2v(t) \times p(t)),$$

which means $\omega(t) = 2v(t)$.