Quiz #3 (CSE 4190.313)

Wednesday, May 12, 2010

Name:	E-mail:	
Dept:	ID No:	

- 1. (10 points) B is a 3×3 matrix with three eigenvalues 0, 1, 2. This information is enough to find three of these:
 - (a) the rank of B, = 2
 - (b) the determinant of B^TB , \bigcirc
 - (c) the eigenvalues of B^TB , and Not enough information
 - (d) the determinant of $(B+I)^{-1}$. = 1/6
 - (a) $B *_1 = 0 *_1$, $B *_2 = *_2$, $B *_3 = 2 *_3$

rank
$$B \le 2$$
 (°° x_1 is in the nullspace of B)
rank $B \ge 2$ (°° x_2 and x_3 are two lin. indep.

Vectors in the column space of B)

: rank B=2

- (c) B may be non-symmetric.
- (d) $(B+I) \times_1 = \times_1$, $(B+I) \times_2 = 2 \times_2$, $(B+I) \times_3 = 3 \times_3$ det(B+I) = 6 $det(B+I)^{-1} = 1/6$

2. (10 points) What is the limit as $k \to \infty$ of

$$\begin{bmatrix} 0.4 & 0.3 \\ 0.6 & 0.7 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

$$\det(A - \lambda I) = \begin{vmatrix} 0.4 - \lambda & 0.3 \\ 0.6 & 0.7 - \lambda \end{vmatrix} = \lambda^2 - 1.1 \lambda + 0.1 = 0$$

$$\therefore \lambda = 1, 0.1$$

$$\lambda_{1} = 1, \quad \lambda_{1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \lambda_{2} = 0.1, \quad \lambda_{2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$A^{k} = \sum_{1} \lambda^{k} S^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$$

$$\lim_{k \to \infty} A^{k} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$$

$$\lim_{k \to \infty} A^{k} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$$

$$\lim_{k \to \infty} A^{k} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$$

$$\lim_{k \to \infty} A^{k} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$$

$$\lim_{k \to \infty} A^{k} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$$

$$\lim_{k \to \infty} A^{k} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$$

3. (10 points)

- (a) (5 points) What matrix M changes the basis $V_1 = (1, 1), V_2 = (1, 4)$ to the basis $\mathbf{v}_1 = (2, 5), \mathbf{v}_2 = (1, 4)$?
- (b) (5 points) For the same two bases, express the vector (3,9) as a combination $c_1V_1 + c_2V_2$ and also as $d_1\mathbf{v}_1 + d_2\mathbf{v}_2$. Check numerically that M connects $\mathbf{c} = (c_1, c_2)^T$ to $\mathbf{d} = (d_1, d_2)^T$: $M\mathbf{c} = \mathbf{d}$.

(a)
$$V_1 = V_1 - V_2$$

$$V_2 = V_2$$

$$\Rightarrow M = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

(b)
$$(3.9) = V_1 + 2V_2 \Rightarrow C = (1,2)^T$$

 $(3.9) = V_1 + V_2 \Rightarrow d = (1,1)^T$
 $MC = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = d1!$