Quiz #3 (CSE 4190.313)

Monday, April 11, 2011

Name:	E-mail:	
Dont	ID No:	

1. (4 points) Suppose all vectors \mathbf{x} in the unit square $[0,1] \times [0,1] = \{(x_1,x_2) \mid 0 \le x_1, x_2 \le 1\}$ are transformed to $A\mathbf{x}$, where A is a 2 by 2 matrix.

 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

- (a) What is the shape of the transformed region (all Ax)?
- (b) For which matrices A is that region a square?
- (c) For which A is it a line?
- (d) For which A is the new area still 1?
- (a) Parallelogram with four corners: (0,0), (a,c), (b,d), (a+b, c+d)

(b)
$$ab+cd=0$$
, $a^2+c^2=b^2+d^2+0$

(c)
$$ad-bc=0$$
, but $A \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

(d)
$$ad-bc=\pm 1$$

- 2. (3 points) Find the dimensions of these vector spaces:
 - (a) The space of all vectors in \mathbb{R}^3 whose components add to zero. \mathbb{R}^3
 - (b) The nullspace of the 3 by 3 identity matrix. O dom.
 - (c) The space of all 3 by 3 matrices. 9 dm.

(a)
$$\{(x,y,z) \in \mathbb{R}^3 \mid x+y+z=0\}$$

 $(x,y,z) = (x,y,-x-y) = x(1,0,+)+y(0,1,-1)$

(b)
$$N(I) = \{0\}$$

(c) Basis: $\{[000], \dots, [000]\}$

- 3. (4 points) True or false (give a good reason or a counterexample)?
 - (a) The vectors **b** that are not in the column space C(A) form a subspace.
 - (b) If C(A) contains only the zero vector, then A is the zero matrix.
 - (c) The column space of 2A equals to the column space of A.
 - (d) The column space of A I equals the column space of A.

(c) True. Too Let
$$\alpha_1, \dots, \alpha_n$$
: columns of A ,
$$\Rightarrow c_1(2\alpha_1) + \dots + c_n(2\alpha_n)$$

$$= (2c_1)\alpha_1 + \dots + (2c_n)\alpha_n$$

(d) Fralse. Too When
$$A=I$$
, $C(A-I)=C(0)=\{0\}$
 $C(A)=C(I)=IR^n$

4. (9 points) Given

$$A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix},$$

- (a) (3 points) Find the special solutions of $A\mathbf{x} = \mathbf{0}$.
- (b) (3 points) Find the column space and nullspace of A.
- (c) (3 points) Find a particular solution to $A\mathbf{x} = \mathbf{b}$.

(a)
$$A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} = U$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} = R$$
Special Solutions: $\begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -2 \\ 0 \end{bmatrix}$
(b) Basis of $C(A)$: $\left\{ \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \\ 3 \end{bmatrix} \right\}$
Bosis of $N(A) = \left\{ \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix} \right\}$

$$\begin{pmatrix} CC \\ 1b = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \rightarrow \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix}$$

$$x = \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix}$$