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Fill-Area Primitives
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FIGURE 3-40 Solid-color
fill areas specified with
various boundaries. (a) A
circular fill region. (b) A fill

area bounded by a closed
polyline. (c) A filled area @
specified with an irregular FIGURE 3-41 Wire-frame
curved boundary. . .
representation for a cylinder,
showing only the front
(visible) faces of the polygon
mesh used to approximate the
| ot surfaces.




Polygon Fill-Areas

‘ FIGURE 3-42 A convex
polygon (a), and a concave
o 180° polygon (b).
(a) (b)
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Splitting Concave Polygons

o | /1 FIGURE 3-45 Splitting a
g concave polygon using the

i y v, rotational method. After

14 4 moving V; to the coordinate

origin and rotating V3 onto

: the x axis, we find that V4 is

> below the x axis. So we split

the polygon along the line of
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FIGURE 3-44 Splitting a v, V12 V3, which is the x axis.

concave polygon using the
vector method.
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Inside—Qutside Tests
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Boolean Ops using Winding #s

o

FIGURE 3-47 A fill area defined
as a region that has a positive value
for the winding number. This fill area
is the union of two regions, each with
a counterclockwise border direction.
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FIGURE 3-48 A fill area defined
as a region with a winding number
greater than 1. This fill area is the
intersection of two regions, each with
a counterclockwise border direction.
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Region A

FIGURE 3-49  Afill area
defined as a region with a positive
value for the winding number. This
fill area is the difference, A — B, of
two regions, where region A has a
positive border direction
(counterclockwise) and region B
has a negative border direction
(clockwise).



Polygon Tables

Listing the geometric data in three tables, as in Fig. 3-50, provides a conve-

?3 “jv “fr gl nient reference to the individual components (vertices, edges, and surface facets)

Ey  VaViS.S, for each object. Also, the object can be displayed efficiently by using data from
g: 1‘2 5; gi the edge table to identify polygon boundaries. An alternative arrangement is to

Eg Vs ViS5, use just two tables: a vertex table and a surface-facet table. But this scheme is
less convenient, and some edges could get drawn twice in a wire-frame display.

FIGURE 3-51  Edge table Another possibility is to use only a surface-facet table, but this duplicates coor-
expanded to include pointers dinate information, since explicit coordinate values are listed for each vertex in

tttheisukiasitacet table each polygon facet. Also the relationship between edges and facets would have

to be reconstructed from the vertex listings in the surface-facet table.

We can add extra information to the data tables of Fig. 3-50 for faster informa-
tion extraction. For instance, we could expand the edge table to include forward
pointers into the surface-facet table so that a common edge between polygons

could be identified more rapidly (Fig. 3-51). This is particularly useful for render-
ing procedures that must vary surface shading smoothly across the edges from
one polygon to the next. Similarly, the vertex table could be expanded to reference
corresponding edges, for faster information retrieval.
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Plane Equations

Ax+By+Cz+ D=0 (3-59)

(A/D)x; + (B/D)y + (C/D)zy = -1, k=1,2,3 (3-60)

Cramer’s rule, as

1y =z x1 1 =z
A=|1 h 23 B = X2 | Zo
1 Y3 Z3 X3 1 Z3
(3-61)
X1 W 1 X1 N1 oz
C= X2 2 1 D=- X2 1 22
x3 oy 1 X3 Y3 Z3

Expanding the determinants, we can write the calculations for the plane coeffi-
cients in the form

A= yi(z2 — 23) + Ya(23 — 21) + Y3(21 — 22)

B = z1(xz — x3) + 22(x3 — x1) + 23(x1 — X2)

C=x1002 — 1)+ x2(y3 — y1) + x3(11 — V2)

D = —x1(1pz3 — Y322) — %2(Y321 — 123) — x3(1h122 — Y221)

(3-62)



Front and Back Polygon Faces

N=(4.8.C) " FIGURE 3-53  The
normal vector N for a plane
described with the equation
Ax+ By+Cz+ D =01s
perpendicular to the plane
and has Cartesian
components (A, B, C).

N

if Ax+ By+Cz+ D <0, behind the plane
if Ax+By+Cz+ D >0, in front of the plane




