Chapter 8 Two-Dimensional Viewing

Myung-Soo Kim
Seoul National University
http://cse.snu.ac.kr/mskim
http://3map.snu.ac.kr

2D Viewing

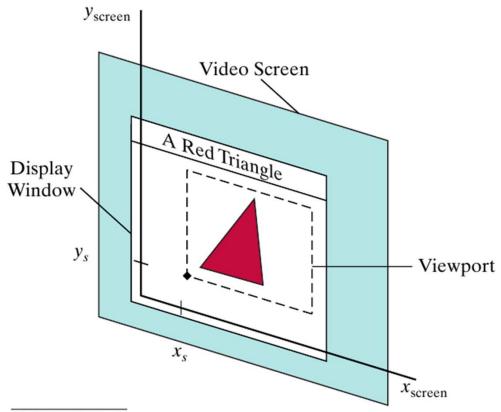


FIGURE 6-9 A viewport at coordinate position (x_s, y_s) within a display window.

2D Viewing Transformation

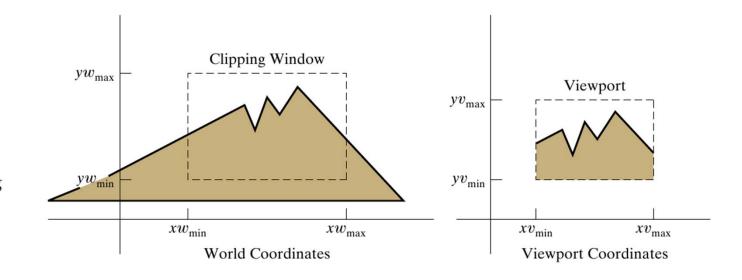


FIGURE 6-2 A clipping window and associated viewport, specified as rectangles aligned with the coordinate axes.

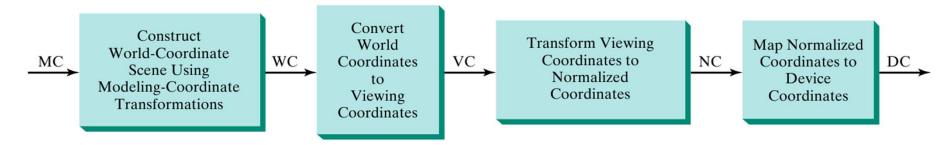
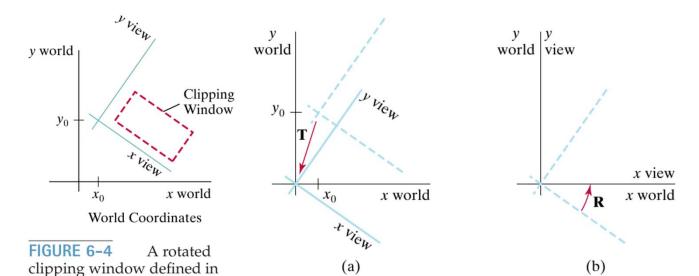


FIGURE 6-3 Two-dimensional viewing-transformation pipeline.

Clipping Window



viewing coordinates.

FIGURE 6-5 A viewing-coordinate frame is moved into coincidence with the world frame by (a) applying a translation matrix **T** to move the viewing origin to the world origin, then (b) applying a rotation matrix **R** to align the axes of the two systems.

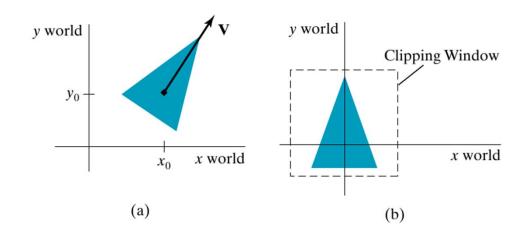


FIGURE 6-6 A triangle (a), with a selected reference point and orientation vector, is translated and rotated to position (b) within a clipping window.

Normalized Viewport/Square

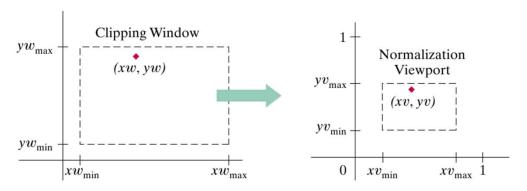


FIGURE 6-7 A point (xw, yw) in a world-coordinate clipping window is mapped to viewport coordinates (xv, yv), within a unit square, so that the relative positions of the two points in their respective rectangles are the same.

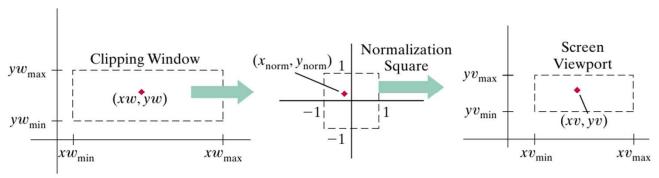
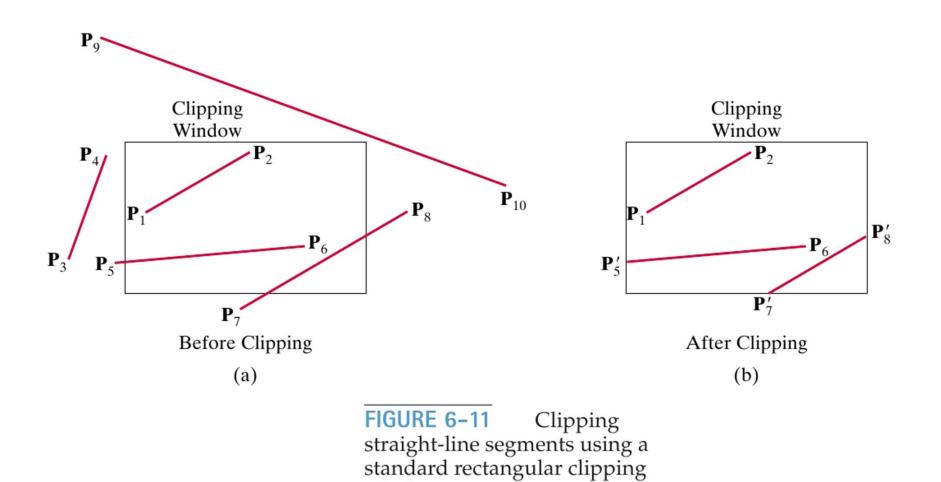


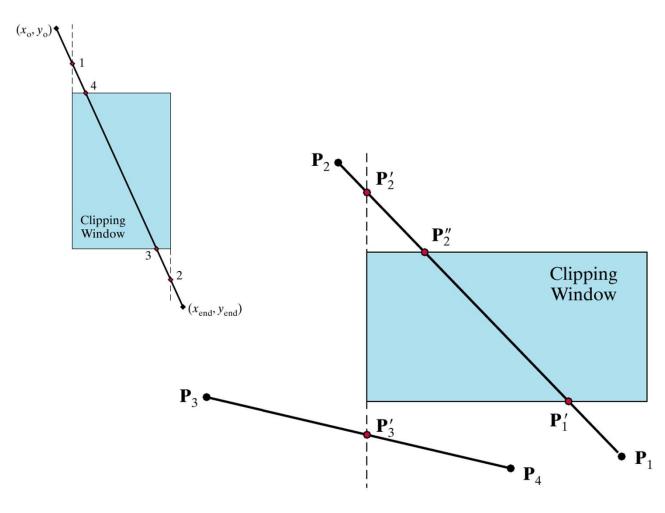
FIGURE 6-8 A point (xw, yw) in a clipping window is mapped to a normalized coordinate position (x_{norm}, y_{norm}) , then to a screen-coordinate position (xv, yv) in a viewport. Objects are clipped against the normalization square before the transformation to viewport coordinates.

Line Clipping



window.

Cohen-Sutherland Algorithm



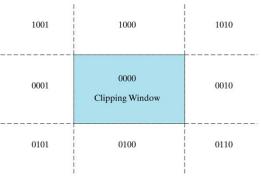


FIGURE 6-13 The nine binary region codes for identifying the position of a line endpoint, relative to the clipping-window boundaries.

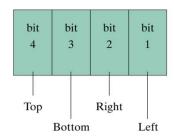


FIGURE 6-12 A possible ordering for the clipping-window boundaries corresponding to the bit positions in the Cohen-Sutherland endpoint region code.

Liang-Barsky Algorithm

endpoints

$$(x_0, y_0), (x_{end}, y_{end})$$

$$\Delta x = x_{\rm end} - x_0$$

$$\Delta y = y_{\rm end} - y_0$$

$$x = x_0 + u\Delta x$$

$$y = y_0 + u\Delta y$$

$$0 \le u \le 1$$

$$xw_{\min} \le x_0 + u\Delta x \le xw_{\max}$$

$$yw_{\min} \le y_0 + u\Delta y \le yw_{\max}$$

$$u p_k \leq q_k$$
,

$$k = 1, 2, 3, 4$$

$$p_1 = -\Delta x$$
,

$$q_1 = x_0 - x w_{\min}$$

$$p_2 = \Delta x$$
,

$$q_2 = x w_{\text{max}} - x_0$$

$$p_3 = -\Delta y$$

$$p_3 = -\Delta y, \qquad q_3 = y_0 - y w_{\min}$$

$$p_4 = \Delta y$$
,

$$q_4 = yw_{\text{max}} - y_0$$

Liang-Barsky Algorithm

$$xw_{\min} \le x_0 + u\Delta x \le xw_{\max}$$
 $p_1 = -\Delta x$, $q_1 = x_0 - xw_{\min}$
 $yw_{\min} \le y_0 + u\Delta y \le yw_{\max}$ $p_2 = \Delta x$, $q_2 = xw_{\max} - x_0$
 $p_3 = -\Delta y$, $q_3 = y_0 - yw_{\min}$
 $y_3 = -\Delta y$, $y_4 = y_5$

Any line that is parallel to one of the clipping-window edges has $p_k = 0$ for the value of k corresponding to that boundary, where k = 1, 2, 3, and 4 correspond to the left, right, bottom, and top boundaries, respectively. If, for that value of k, we also find $q_k < 0$, then the line is completely outside the boundary and can be eliminated from further consideration. If $q_k \ge 0$, the line is inside the parallel clipping border.

When $p_k < 0$, the infinite extension of the line proceeds from the outside to the inside of the infinite extension of this particular clipping-window edge. If $p_k > 0$, the line proceeds from the inside to the outside. For a nonzero value of p_k , we can calculate the value of u that corresponds to the point where the infinitely extended line intersects the extension of window edge k as

$$u = \frac{q_k}{p_k} \tag{6-20}$$

Liang-Barsky Algorithm

$$xw_{\min} \le x_0 + u\Delta x \le xw_{\max}$$
 $p_1 = -\Delta x$, $q_1 = x_0 - xw_{\min}$
 $yw_{\min} \le y_0 + u\Delta y \le yw_{\max}$ $p_2 = \Delta x$, $q_2 = xw_{\max} - x_0$
 $p_3 = -\Delta y$, $q_3 = y_0 - yw_{\min}$
 $u \ p_k \le q_k$, $k = 1, 2, 3, 4$ $p_4 = \Delta y$, $q_4 = yw_{\max} - y_0$
 $u = \frac{q_k}{p_k}$ (6-20)

For each line, we can calculate values for parameters u_1 and u_2 that define that part of the line that lies within the clip rectangle. The value of u_1 is determined by looking at the rectangle edges for which the line proceeds from the outside to the inside (p < 0). For these edges, we calculate $r_k = q_k/p_k$. The value of u_1 is taken as the largest of the set consisting of 0 and the various values of r. Conversely, the value of u_2 is determined by examining the boundaries for which the line proceeds from inside to outside (p > 0). A value of r_k is calculated for each of these boundaries, and the value of u_2 is the minimum of the set consisting of 1 and the calculated r values. If $u_1 > u_2$, the line is completely outside the clip window and it can be rejected. Otherwise, the endpoints of the clipped line are calculated from the two values of parameter u.

Nicholl-Lee-Nicholl Algorithm

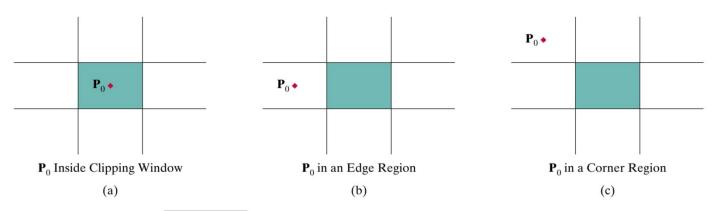


FIGURE 6–16 Three possible positions for a line endpoint P_0 in the NLN line-clipping algorithm.

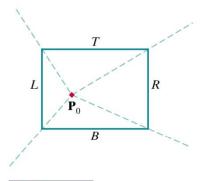


FIGURE 6-17 The four regions used in the NLN algorithm when P_0 is inside the clipping window and P_{end} is outside.

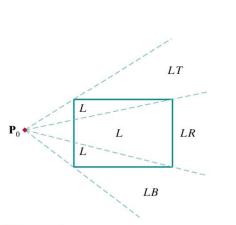


FIGURE 6-18 The four clipping regions used in the NLN algorithm when P_0 is directly to the left of the clip window.

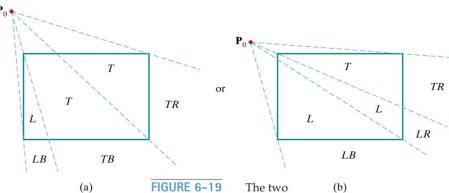


FIGURE 6–19 The two possible sets of clipping regions used in the NLN algorithm when P_0 is above and to the left of the clipping window.

Comparisons

In general, the Liang-Barsky algorithm is more efficient than the Cohen-Sutherland line-clipping algorithm. Each update of parameters u_1 and u_2 requires only one division; and window intersections of the line are computed only once, when the final values of u_1 and u_2 have been computed. In contrast, the Cohen and Sutherland algorithm can repeatedly calculate intersections along a line path, even though the line may be completely outside the clip window. And, each Cohen-Sutherland intersection calculation requires both a division and a multiplication. The two-dimensional Liang-Barsky algorithm can be extended to clip three-dimensional lines (Chapter 7). The extension of the Cohen-Sutherland line-clipping algorithm to three dimensions is straightforward.

Compared to both the Cohen-Sutherland and the Liang-Barsky algorithms, the Nicholl-Lee-Nicholl algorithm performs fewer comparisons and divisions. The trade-off is that the NLN algorithm can be applied only to two-dimensional clipping, whereas both the Liang-Barsky and the Cohen-Sutherland methods are easily extended to three-dimensional scenes.

Nonrectangular Clip Windows

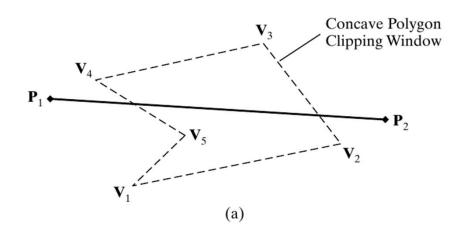
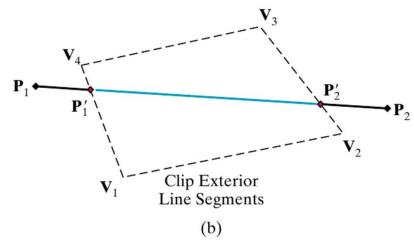
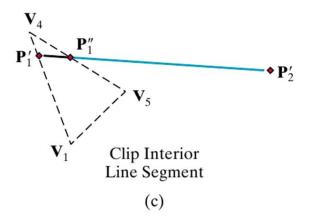


FIGURE 6-20 A concavepolygon clipping window (a), with vertex list $(V_1, V_2, V_3,$ V_4 , V_5), is modified to the convex polygon $(V_1, V_2, V_3,$ V_4) in (b). The external segments of line $\overline{P_1P_2}$ are then snipped off using this convex clipping window. The resulting line segment, $\overline{P_1'P_2'}$, is next processed against the triangle (V_1, V_5, V_4) (c) to clip off the internal line segment $\overline{\mathbf{P}_{1}^{\prime}\mathbf{P}_{1}^{\prime\prime}}$ to produce the final clipped line $\overline{\mathbf{P}_{1}^{\prime\prime}\mathbf{P}_{2}^{\prime}}$.





Polygon Fill-Area Clipping

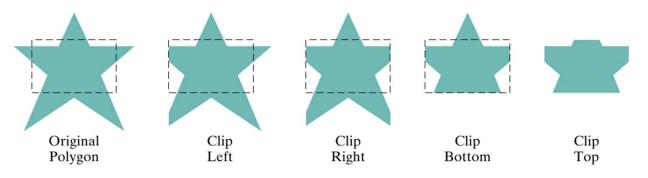
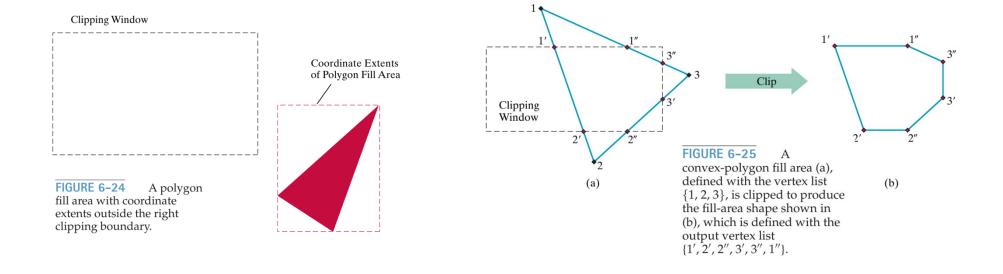
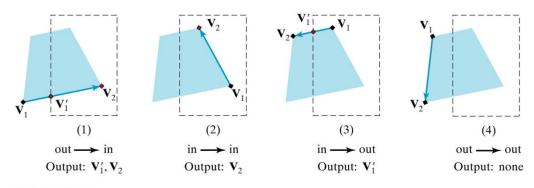


FIGURE 6-23 boundaries.

Processing a polygon fill area against successive clipping-window



Sutherland-Hodgman Algorithm



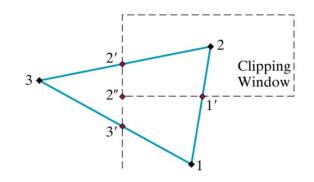
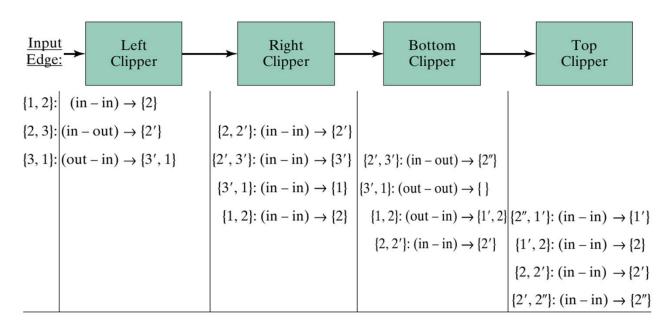


FIGURE 6-26 The four possible outputs generated by the left clipper, depending on the position of a pair of endpoints relative to the left boundary of the clipping window.

FIGURE 6-27 Processing a set of polygon vertices, {1, 2, 3}, through the boundary clippers using the Sutherland-Hodgman algorithm. The final set of clipped vertices is {1', 2, 2', 2"}.



Weiler-Atherton Algorithm

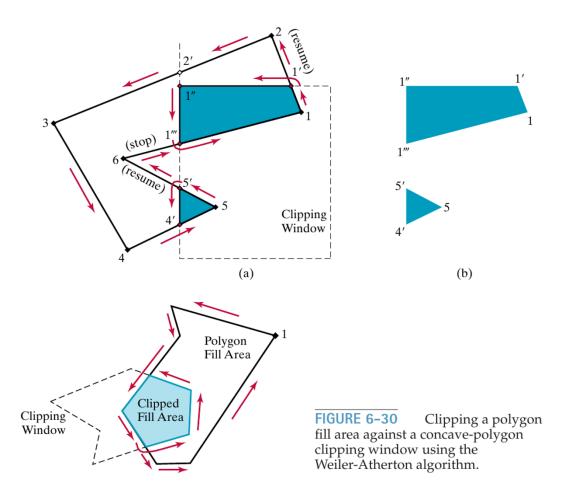


FIGURE 6-29 A concave polygon (a), defined with the vertex list {1, 2, 3, 4, 5, 6}, is clipped using the Weiler-Atherton algorithm to generate the two lists {1, 1', 1", 1"'} and {4', 5, 5'}, which represent the separate polygon fill areas shown in (b).