Quiz #2 (CSE 4190.313)

Wednesday, April 4, 2012

Name: ID No:

1. (4 points) Write all known relations between r and m and n if Ax = b has

(a) (2 points) infinitely many solutions for every b.

(b) (2 points) exactly one solution for some b, no solution for other b.
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2. (8 points) True or false (with a counterexample if false and a reason if true):

(a) (2 points) A and AT have the same left nullspace.
(b) (2 points) If the row space equals the column space, then AT = A.

(¢) (4 points) The solution x, for Ax = b with all free variables zero is the shortest
solution (minimum length ||x]|).
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3. (3 points) Suppose a linear T transforms (1,1) to (2,2) and (2,0) to (0,0). Find T'(v)
when v = (a,b).
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4. (5 points) In the vector space P of all p(x) = ag+a,z+asx®+ a3z, let S be the subspace
of polynomials with [ p(z)dz = 0. Find a basis for the subspace S.
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5. (10 points) Suppose the matrices in PA = LU are
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(a) (1 point) What is the rar ofA? 3 (—- Ak Of P\VO""S}
(b) (1 point) What is a basjs for the row space of A7
(c) (2 point) True or fals¢: Rows 1, 2, 3 of A are linearly independent. Fo\&%
(d) (1 point) What is a basis for the column space of A?
(e) (1 point) What is the dimension of the left nullspace of A? \ (.—: 4~A3>
(f) (4 point) What is the general solution to Ax = 07
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