Chapter 3
Graphics Output Primitives

Myung—Soo Kim
Seoul National University
http://cse.snu.ac.kr/mskim
http://3map.snu.ac.kr

18 T

15 +

Line Drawing

20 21 22 25 30

Line Drawing Algorithms

y=m-x+b (X0, Yo) and (Xend, Yend)

Yond — 10O
m:jen / b= yo—m-Xo \
Xend — X0
Yend T |
5 —_ 5 L Vo + /
Yy=m-ox Ykt1 = Y + M BN
ay 1 . — :X) >
0xX = — Xk+1 = Xk + —
m M+l — Ak - FIGURE 3-7 Straight-line

segment with five sampling
positions along the x axis
between xp and Xnq.

DDA Algorithm

void lineDDA (int x0, int yO0, int xEnd, int yEnd)
{

int dx xEnd - x0, dy = yEnd - y0, steps, Kk;
float xIncrement, yIncrement, x = x0, y = y0;

if (fabs (dx) > fabs (dy))
steps = fabs (dx);
else
steps = fabs (dy);
xIncrement = float (dx) / float (steps);
yIncrement = float (dy) / float (steps);

setPixel (round (x), round (y)):;
for (k = 0; k < steps; kt++) {

X += xIncrement;

y += ylIncrement;

setPixel (round (x), round (y));

Bresenham Algorithm

y=m(+1)+0b

dlower — Y — Yk Vi ol

=mxx+1)+b —

Y

dupper — (yk + 1) — Y
= +1—mlgx+1) —0b

Bresenham Algorithm

y = m +1) +b “
dlower = Y — Yk

_ v+ 1+
=m(xx+1) +D — v
dupper — (yk + 1) — VY Vi +

=y +1—-—mx+1) —0b

dlower — dupper — zm(xk + 1) _ 2]/!(+2b -1

Pr = AX(diower — dupper)
= 2AY - xx —2AXx - Y +C

Bresenham Algorithm
dlower — dupper — Zm(xk + 1) _ Zyk +2b -1

Pk = Ax(dlvz}wer - dupper)
= 2AY - X — 2AXx - 1

C

Pk+1 = 2AY - Xep1 — 2AX - Y1 +C

Pi+1 — Pr = 2AY (X1 — X)) — 2AX (Y1 — Vi)

Pk+1 = Pk + 28Y — 2AX (Yet1 — Vi)

po = 2AYy — Ax

Bresenham’s Line-Drawing Algorithm for [m| < 1.0

1.
2.
3.

Input the two line endpoints and store the left endpoint in (xg, vp).
Set the color for frame-buffer position (xo, yp); i.e., plot the first point.

Calculate the constants Ax, Ay, 2Ay, and 2Ay — 2Ax, and obtain the
starting value for the decision parameter as

po = 2AYy — Ax

At each x; along the line, starting at k = 0, perform the following test.
If pr < 0, the next point to plotis (xx + 1, y) and

Pk+1 = Pk +2Ay
Otherwise, the next point to plotis (xx + 1, yx + 1) and
Pk+1 = Pk + ZAy — 2Ax

Perform step 4 Ax — 1 times.

Bresenham Algorithm

] ®
15 1 .f‘
10 C
N T D A A A B
20 21 22 25 30

Pixel Addressing

5 5 18 O
4 ! . 17
: L) o
4
2 14
3 2 13
1 2 ,] 12
! 7 11
0 0
] 10
o234 01234567 % 1 2 3 4 s 20 21 22 23 24 25 26 27 28 29 30
FIBURE 3-33 Lowerieft FIGURE 3-34 | FIGURE 3-35 Line path FIGURE 3-36 Line path and
sec 1?1 oa scr(_e::n area Illumlnatid pixel at raster for two connected line corresponding pixel display for grid
coordinate post tons position (4, 5). segments between screen endpoint coordinates (20, 10) and (30, 18).
referenced by grid

. A grid-coordinate positions.
intersection lines.

FIGURE 3-37

Conversion of rectangle

(a) with vertices at screen
coordinates (0, 0), (4, 0), (4, 3),
and (0, 3) into display (b) that
includes the right and top
boundaries and into display
(c) that maintains geometric 0 1 2 3 4 5
magnitudes. (a)

= = IR VS B =
o = N W e

Pixel Addressing

\@®

0000
™~

@

5 “‘ (10,10)

... ip

5

FIGURE 3-38

A midpoint-algorithm plot of the circle
equation (x — 10)2 + (y — 10)2 = 52
using pixel-center coordinates.

(v, ~x— 1) (~y—1L-x—1)

] L)

Y

—
=
=
00

DOOS

(y,x) |[(=y = Lx)

FIGURE 3-39

Modification of the circle plot
in Fig. 3-38 to maintain the
specified circle diameter of 10.

Fill-Area Primitives

o X

(a) (b) (c)

FIGURE 3-40 Solid-color
fill areas specified with
various boundaries. (a) A
circular fill region. (b) A fill

area bounded by a closed
polyline. (c) A filled area <>
specified with an irregular [| FIGURE 3-41 Wire-frame
curved boundary. . .
representation for a cylinder,
showing only the front
(visible) faces of the polygon
mesh used to approximate the
Ny | surfaces.

Polygon Fill-Areas

‘ FIGURE 3-42 A convex
polygon (a), and a concave
- 180° polygon (b).
(a) (b)

YA

Vi te———V (E, X E,;), >0

FIGURE 3-43 Identifying

(E, X E5). >0 a concave polygon by
calculating cross products of

AL (E; X Ey). <0 successive pairs of edge
vectors.
E, v (E;, X Es), >0
3
E; E (EsX Eg), >0
2
E, (X E).> 0

A2A 0| LE convex polygonsS& =&8ol= 2 &EgE dNesSs2
Computational Geometry =00 A OFF Z0| HARER/JULCH. HIIAH=
non—convexset vertexE 2t ot H 2= &2|1&5= A IJWetC.

Splitting Concave Polygons

24 /| FIGURE 3-45 Splitting a
. concave polygon using the

b ’ v, rotational method. After

14 ¢ moving V; to the coordinate

origin and rotating V3 onto

) the x axis, we find that V4 is

> below the x axis. So we split

the polygon along the line of

=
(%]
um
p
=Y

FIGURE 3-44 Splitting a \Z V2 V3, which is the x axis.

concave polygon using the
vector method.

PEFS gS
N

E2 E AL

= = W}E0| =& 0|LC}.
ot U0 MO 2 LI = vertexsSS &AM C
=! =

N &= 582 WES

FIF
J

o

Inside—Qutside Tests

exterior

exterior

interior interior

B B
Odd-Even Rule Nonzero Winding-Number Rule

Boolean Ops using Winding #s

N PN A} N
A PR A RN
7 A ,/ \ ri \ f/ \\
[s / -
F \\ o A / X - \
4 ,, \ ! /, AY
4 \ N ! \ N
/ P \ \ ’ - 3 \
‘e N r e X N
Vi P N\ 4 ” \
/N N) VA ¢ !)Y
f \ \ - / \) -,
/ AN \ _ ol ’ \ \ R
4 \\.. \\ -7 ! \L \\ -7
______ \:____ ot T \:-_-_ o
\\ ’/’ \\ ’/’
\\ ’z’ \\ ,/,
(O (Ve
FIGURE 3-47 A fill area defined FIGURE 3-48 A fill area defined
as a region that has a positive value as a region with a winding number
for the winding number. This fill area greater than 1. This fill area is the
is the union of two regions, each with intersection of two regions, each with
a counterclockwise border direction. a counterclockwise border direction.
N /’\
. \ T
RegionB 7 P »
A < N Region A
’ v el 5 egion
J Sl \ FIGURE 3-49 Afill area
/! R N defined as a region with a positive
e \ A-B \ value for the winding number. This
r N . . .
; \ % ’,> fill area is the difference, A — B, of
’ \ .)
/ N \ el two regions, where region A has a
______ N -7 positive border direction
k -~ lockwise) and region B
\ 7 (counterclockwise) and region
N has a negative border direction

(clockwise).

Polygon Tables

Listing the geometric data in three tables, as in Fig. 3-50, provides a conve-

g; 2 : Egi nient reference to the individual components (vertices, edges, and surface facets)

Ey VyV0.S5.5, for each object. Also, the object can be displayed efficiently by using data from
ARGl the edge table to identify polygon boundaries. An alternative arrangement is to

Eg Vs Vi,5, use just two tables: a vertex table and a surface-facet table. But this scheme is
less convenient, and some edges could get drawn twice in a wire-frame display.

FIGURE 3-51 Edge table Another possibility is to use only a surface-facet table, but this duplicates coor-
expanded to include pointers dinate information, since explicit coordinate values are listed for each vertex in

into the surface-facet table. each polygon facet. Also the relationship between edges and facets would have

to be reconstructed from the vertex listings in the surface-facet table.

We can add extra information to the data tables of Fig. 3-50 for faster informa-
tion extraction. For instance, we could expand the edge table to include forward
pointers into the surface-facet table so that a common edge between polygons

could be identified more rapidly (Fig. 3-51). This is particularly useful for render-
ing procedures that must vary surface shading smoothly across the edges from
one polygon to the next. Similarly, the vertex table could be expanded to reference
corresponding edges, for faster information retrieval.

VERTEX TABLE EDGE TABLE SURF‘chBE&ACET /&,I' le'césl 9,']H —J|\—j|‘ E]g Ol‘Xl 04 Vertex 9" edgeol
Voawn ey wees 0 =& FSIE0HL, W HH vertex_car edges
e || e v index= EAIGHS X2l 20| 20 SItECH
L& Ol= &12t8F 2HIOIC.

Plane Equations

Ax+By+Cz+ D=0 (3-59)
(A/D)xi + (B/D)y + (C/D)zy = -1, k=1,2,3 (3-60)
Cramer’s rule, as
1 n =z x1 1 z
A=|(1 pn =z B=|xx 1 =z
1 1 z3 x3 1 z3
(3-61)
X1 W 1 X1 N 4
C = X2 1P 1 D=— X2 W 22
x3 Yz 1 X3 Y3 Z3

Expanding the determinants, we can write the calculations for the plane coeffi-
cients in the form

A= (22 — z3) + (23 — z1) + 13(21 — 22)

B = z1(x2 — x3) + 2o(x3 — Xx1) + Z3(x1 — Xp)

C=x102 — 1)+ x2(5 — y1) + x3(y1 — 12)

D = —x1(1pz3 — Y322) — X2(1321 — 123) — x3(1122 — z1)

(3-62)

Front and Back Polygon Faces

};

N=(4.8.C) " FIGURE 3-53 The

normal vector N for a plane
described with the equation
Ax+ By+Cz+ D =01s

perpendicular to the plane
and has Cartesian
components (A, B, C).

&

if Ax+ By+Cz+ D <0, behind the plane
if Ax+By+Cz+ D >0, in front of the plane

	Chapter 3�Graphics Output Primitives
	Line Drawing
	Line Drawing Algorithms
	DDA Algorithm
	Bresenham Algorithm
	Bresenham Algorithm
	Bresenham Algorithm
	Bresenham Algorithm
	Bresenham Algorithm
	Pixel Addressing
	Pixel Addressing
	Fill-Area Primitives
	Polygon Fill-Areas
	Splitting Concave Polygons
	Inside-Outside Tests
	Boolean Ops using Winding #s
	Polygon Tables
	Plane Equations
	Front and Back Polygon Faces

