Programming #5 (4190.410)
Due: November 28, 2012

A cubic Bézier curve C(t) = 37 by B} (t), 0 < t < 1, can be approximated by a polygonal
curve L"(t) connecting a sequence of curve points C(t!) = C(i/2"), for i =0, ---, 2" within
an approximation error bound (Filip et al., CAGD 1986):

O~ L)) < 5 - - max (b — 2y + bal], [lby — 2bs + by]) = 1.
More precisely, each line segment L(t), (t! , < t < t'), approximates the corresponding
curve segment C'(t) = C(t), (!, <t < t!), within the error bound €, > 0.

Design an interactive system that can edit an infinite line ax 4 by + ¢ = 0 by controlling
two points pg and p; on the line, and the cubic Bézier curve C(t) by dragging the four
control points b;. Moreover, implement a recursive algorithm for computing the intersection

between the cubic Bézier curve C(t) and the infinite line az + by + ¢ = 0.

1. Design a recursive algorithm for computing the signed distances d? ; and d? of the
endpoints of L(t) from the line ax + by + ¢ = 0.

(a) If the two signed distances are both less than —e, or both larger than ¢, (i.e.,
[(dh |, < —ep) A(dF < —ep)] or [(dP) > €,) A (dF > €,)]), there will be no
intersection between CI'(¢) and the line ax + by + ¢ = 0.

(b) Otherwise, go down to the next level of the recursive approximation by evaluating

. . h h
the curve at the midpoint C(%(ZQ_—,} +97)) = Clh(%) = Chrl(¢htl)).

2. Repeat the same procedure recursively until the maximum level A = 10 and report an
appropriate point of the correspondig line segment L?(t) as an approximate intersection
point.

3. Each time you modify the curve C(t) or the line az + by + ¢ = 0, recompute the
intersection points.

4. To speed up the curve evaluation C(t;), it is important to precompute the basic func-
tions B}(t;), for [= 0,1,2,3, at all finest parameter values t; = /21, i = 0,---,21%.
Note that these function values are fixed

