Programming #5 (4190.410)

Due: November 28, 2012

A cubic Bézier curve $C(t) = \sum_{l=0}^{3} \mathbf{b}_{l} B_{l}^{3}(t)$, $0 \le t \le 1$, can be approximated by a polygonal curve $L^{h}(t)$ connecting a sequence of curve points $C(t_{i}^{h}) = C(i/2^{h})$, for $i = 0, \dots, 2^{h}$, within an approximation error bound (Filip et al., CAGD 1986):

$$||C(t) - L^h(t)|| \le \frac{3}{4} \cdot \frac{1}{4^h} \cdot \max(||\mathbf{b}_0 - 2\mathbf{b}_1 + \mathbf{b}_2||, ||\mathbf{b}_1 - 2\mathbf{b}_2 + \mathbf{b}_3||) = \epsilon_h.$$

More precisely, each line segment $L_i^h(t)$, $(t_{i-1}^h \leq t \leq t_i^h)$, approximates the corresponding curve segment $C_i^h(t) = C(t)$, $(t_{i-1}^h \leq t \leq t_i^h)$, within the error bound $\epsilon_h \geq 0$.

Design an interactive system that can edit an infinite line ax + by + c = 0 by controlling two points \mathbf{p}_0 and \mathbf{p}_1 on the line, and the cubic Bézier curve C(t) by dragging the four control points \mathbf{b}_l . Moreover, implement a recursive algorithm for computing the intersection between the cubic Bézier curve C(t) and the infinite line ax + by + c = 0.

- 1. Design a recursive algorithm for computing the signed distances d_{i-1}^h and d_i^h of the endpoints of $L_i^h(t)$ from the line ax + by + c = 0.
 - (a) If the two signed distances are both less than $-\epsilon_h$ or both larger than ϵ_h (i.e., $[(d_{i-1}^h < -\epsilon_h) \wedge (d_i^h < -\epsilon_h)]$ or $[(d_{i-1}^h > \epsilon_h) \wedge (d_i^h > \epsilon_h)]$), there will be no intersection between $C_i^h(t)$ and the line ax + by + c = 0.
 - (b) Otherwise, go down to the next level of the recursive approximation by evaluating the curve at the midpoint $C(\frac{1}{2}(\frac{i-1}{2^h}+\frac{i}{2^h}))=C_i^h(\frac{t_{i-1}^h+t_i^h}{2})=C_{2i}^{h+1}(t_{2i-1}^{h+1}).$
- 2. Repeat the same procedure recursively until the maximum level h = 10 and report an appropriate point of the correspondig line segment $L_i^h(t)$ as an approximate intersection point.
- 3. Each time you modify the curve C(t) or the line ax + by + c = 0, recompute the intersection points.
- 4. To speed up the curve evaluation $C(t_i)$, it is important to precompute the basic functions $B_l^3(t_i)$, for l=0,1,2,3, at all finest parameter values $t_i=i/2^{10}$, $i=0,\cdots,2^{10}$. Note that these function values are fixed