Quiz \#5 (CSE 400.001)

November 17, 2010 (Wednesday)

1. (10 points) Use $x_{0}=-3$ and $x_{1}=-2$ in solving the following equation by Newton's method

$$
x^{2}-3=0 .
$$

How many additional iterations are necessary to produce the solution to 5D accuracy?

Solution:

$$
\begin{gathered}
\frac{f^{\prime \prime}(s)}{2 f^{\prime}(s)} \approx \frac{f^{\prime \prime}\left(x_{1}\right)}{2 f^{\prime}\left(x_{1}\right)}=\frac{2}{4 x_{1}}=\frac{1}{2 x_{1}}=-0.25 \\
\epsilon_{n+1} \approx 0.25 \epsilon_{n}^{2} \approx 0.25^{3} \epsilon_{n-1}^{4} \approx 0.25^{2^{n+1}-1} \epsilon_{0}^{e^{n+1}} \leq 5 \cdot 10^{-6} \\
\epsilon_{1}-\epsilon_{0}=\left(\epsilon_{1}-s\right)-\left(\epsilon_{0}-s\right)=-x_{1}+x_{0}=-1 \\
\epsilon_{1}=\epsilon_{0}-1 \approx 0.25 \epsilon_{0}^{2} \\
0.25 \epsilon_{0}^{2}-\epsilon_{0}+1 \approx 0 \\
\epsilon_{0} \approx 2 \\
n=1: \quad 0.25^{3} \cdot 2^{4} \approx 2^{-2}>5 \cdot 10^{-6} \\
n=2: \quad 0.25^{7} \cdot 2^{8} \approx 2^{-6}>5 \cdot 10^{-6} \\
n=3: \quad 0.25^{15} \cdot 2^{16} \approx 2^{-14}>5 \cdot 10^{-6} \\
n=4: \quad 0.25^{31} \cdot 2^{32} \approx 2^{-30}<5 \cdot 10^{-6}
\end{gathered}
$$

Hence, $n=4$ additional iterations are necessary.
2. (5 points) Interpolate

$$
f_{0}=f(0)=0, f_{1}=f(1)=1, f_{2}=f(2)=6
$$

by the cubic spline satisfying $k_{0}=0$ and $k_{2}=2$.

Solution:

$$
\begin{gathered}
k_{0}+4 k_{1}+k_{2}=3 \cdot(6)=18 \Longrightarrow 4 k_{1}=16 \Longrightarrow k_{1}=4 \\
\left\{\begin{array}{l}
p_{0}(x)=2 x^{3}-2 x^{2}, \quad \text { for } 0 \leq x \leq 1 \\
p_{1}(x)=-2(x-1)^{3}+3(x-1)^{2}+4(x-1)+1, \quad \text { for } 2 \leq x \leq 4
\end{array}\right.
\end{gathered}
$$

3. (5 points) Compute the following integral using the Gauss quadrature with $n=3$.

$$
\int_{0}^{2} \frac{2}{x+1} d x
$$

Solution:

$$
\begin{gathered}
x=t+1 \Rightarrow d x=d t \\
\int_{-1}^{1} \frac{2}{t+2} d t \\
=\cdots
\end{gathered}
$$

