Quiz \#5 (CSE 400.001)

November 16, 2010 (Wednesday)

1. (10 points) Compute the following integral using the Gauss quadrature with $n=$ $2,3,4$ and compare the results with the exact result.

$$
\int_{0}^{4}(2 x+1) d x
$$

Solution:

Let $x=2 t+2$, then $d x=2 d t$ and $\int_{0}^{4}(2 x+1) d x=\int_{-1}^{1}(8 t+10) d t=20$
(i) $n=2: \int_{-1}^{1}(8 t+10) d t=1 *[8 *(-0.57735)+10]+1 *[8 * 0.57735+10]=20, \epsilon=0$
(ii) $n=3: \int_{-1}^{1}(8 t+10) d t=0.55556 *[8 *(-0.77460)+10]+0.88889 *[10]$

$$
+0.55556 *[8 * 0.77460+10]=20.0001, \epsilon=0.0001
$$

(iii) $n=4: \int_{-1}^{1}(8 t+10) d t=0.34785 *[8 *(-0.86113)+10]+0.65215 *[8 *(-0.33998)+10]$

$$
\begin{aligned}
& +0.65215 *[8 * 0.33998+10]+0.34785 *[8 * 0.86113+10]=20 \\
& \quad \epsilon=0
\end{aligned}
$$

2. (5 points) Find a good way to compute

$$
\sqrt{x^{2}+100}-10
$$

for small $|x| \ll 1$.

Solution:

$$
\sqrt{x^{2}+100}-10=\frac{x^{2}}{\sqrt{x^{2}+100}+10}
$$

3. (5 points) Interpolate

$$
f_{0}=f(-2)=2, f_{1}=f(0)=1, f_{2}=f(2)=8
$$

by the cubic spline satisfying $k_{0}=-2$ and $k_{2}=2$.

Solution:

$$
\begin{gathered}
k_{0}+4 k_{1}+k_{2}=\frac{3}{2} \cdot(6)=9 \Longrightarrow 4 k_{1}=9 \Longrightarrow k_{1}=\frac{9}{4} \\
\left\{\begin{array}{l}
p_{0}(x)=A x^{3}+B x^{2}+\frac{9}{4} x+1, \quad \text { for }-2 \leq x \leq 0 \\
p_{0}^{\prime}(x)=3 A x^{2}+2 B x+\frac{9}{4}, \quad \text { for }-2 \leq x \leq 0 \\
p_{1}(x)=a x^{3}+b x^{2}+\frac{9}{4} x+1, \quad \text { for } 0 \\
p_{1}^{\prime}(x)=3 a x^{2}+2 b x+\frac{9}{4}, \quad \text { for } 0 \leq x \leq 2
\end{array}\right. \\
\qquad\left\{\begin{array}{l}
p_{0}(-2)=-8 A+4 B-\frac{9}{2}+1=2, \\
p_{0}^{\prime}(-2)=12 A-4 B+\frac{9}{4}=-2, \\
p_{1}(2)=8 a+4 b+\frac{9}{2}+1=8, \\
p_{1}^{\prime}(2)=12 a+4 b+\frac{9}{4}=2 .
\end{array}\right. \\
\left\{\begin{array}{l}
p_{0}(x)=\frac{5}{16} x^{3}+2 x^{2}+\frac{9}{4} x+1, \quad \text { for }-2 \leq x \leq 0 \\
p_{1}(x)=-\frac{11}{16} x^{3}+2 x^{2}+\frac{9}{4} x+1, \quad \text { for } 0 \leq x \leq 2
\end{array}\right.
\end{gathered}
$$

