Chapter 4
Attributes of Graphics Primitives

Myung—Soo Kim
Seoul National University
http://cse.snu.ac.kr/mskim
http://3map.snu.ac.kr

Attributes

Color Attributes

Point Attributes

Line Attributes

Curve Attributes

Fill-Area Attributes

— Fill Styles: Hollow, Solid, Patterned
Character Attributes

RGB Color Components

TABLE 4-1

THE EIGHT RGB COLOR CODES FOR A THREE-BIT PER PIXEL FRAME BUFFER

Stored Color Values
in Frame Buffer
Color Code RED GREEN BLUE Displayed Color

0 0 0 0 Black

1 0 0 1 Blue

2 0 1 0 Green
3 0 1 1 Cyan

4 1 0 0 Red

5 1 0 1 Magenta
6 1 1 0 Yellow
7 1 1 1 White

Color Lookup Tables

Color
Lookup
Table —> To Red Gun
0
To Green Gun
|—> To Blue Gun
VT 196
L»l% 2081 } 0000O0ODOO0OD|0D00O0D1TO00D0|D0D1TOO0D0DO0O1

255

|
I
X

FIGURE 4-1 A color lookup table with 24 bits per entry that is accessed from a frame
buffer with 8 bits per pixel. A value of 196 stored at pixel position (x, y) references the
location in this table containing the hexadecimal value 0x0821 (a decimal value of 2081).
Each 8-bit segment of this entry controls the intensity level of one of the three electron

guns in an RGB monitor.

Color Blending

 The current color is the destination color

 The color of the second object is the
source color

The new, blended color that is then loaded into the frame buffer is calculated as

(5yRs + D, Ra, S5;Gs + DyGa, SpBs + Dy By, S0 As + Dy Ag) (4-1)

where the RGBA source color components are (Rs, Gs, Bs, As), the destina-
tion color components are (Ry, G4, By, Aj), the source blending factors are
(S, S¢, Sp, Sa), and the destination blending factors are (D,, Dy, Dy, D,). Com-
puted values for the combined color components are clamped to the range from

0.0 to 1.0. That is, any sum greater than 1.0 is set to the value 1.0, and any sum
less than 0.0 is set to 0.0.

Color—Blended Fill Regions

Pattern Background

Xor

and

FIGURE 4-19 Combining
a fill pattern with a back-
ground pattern using logical
operations and, or, and xor
(exclusive or), and using
simple replacement.

replace

Linear Soft—Fill Algorithm

The current RGB color P of each pixel within the area to be refilled is some linear
combination of F and B:

P=tF+(1-1tB (4-2)

where the transparency factor t has a value between 0 and 1 for each pixel. For
values of t less than 0.5, the background color contributes more to the interior
color of the region than does the fill color. Vector Eq. 4-2 holds for each RGB

component of the colors, with

P = (pr PG: PB.))‘ F= (PRf PGI PB,): B = (BRf BGr BB) (4—2)

Similar color-blending procedures can be applied to an area whose fore-
ground color is to be merged with multiple background color areas, such as a
checkerboard pattern. When two background colors B; and B; are mixed with
foreground color F, the resulting pixel color P is

P = f[]F + le:[+ (1 — Iy — fl)Bg (4”;)

Scan—Line Polygon Fill

y
Scan Line y'
/1 2 1
/ Scan Line y
1 2 1 1
—t— | X
10 14 18 24 .
FIGURE 4-20 Interior pixels along a scan line FIGURE 4-21 Intersection points along scan lines that
passing through a polygon fill area. intersect polygon vertices. Scan line y generates an odd
number of intersections, but scan line i’ generates an even

number of intersections that can be paired to identify correctly
the interior pixel spans.

(Y4 1Yk 1) Scan Line y, + 1

Scan Line y,

FIGURE 4-23 Two
successive scan lines
intersecting a polygon
boundary.

Scan—Line Polygon Fill

Scan-
Line
Number
Ve | » > Vi | Xc | Umgy
B
Vp | e > Yo | Xp | Umpe| o> Ye | Yo | Ump,
C Scan Line y
C E :
v, | e Vi | X4 | Umyp| et Vi | X4 | U,
Scan Line y,
Scan Line v, D \
A
1
0

FIGURE 4-24 A polygon and its sorted edge table, with edge DC shortened by one

unit in the y direction.

Boundary—Fill Algorithm

FIGURE 4-27 Fill
methods applied to a
4-connected area (a) and to an
8-connected area (b). Hollow
circles represent pixels to be
tested from the current test
position, shown as a solid
color.

Start Position

(a) (b)

(a) (b)

‘ FIGURE 4-28 The area defined within the color
FIGURE 4-26 Example color boundaries for a boundary (a) is only partially filled in (b) using a
boundary-fill procedure. 4-connected boundary-fill algorithm.

Boundary—Fill Algorithm

void boundaryFill4 (int x,

{

int interiorColor:

int vy,

getPixel (x, y, interiorColor);
= borderColor) && (interiorColor != fillColor))
// Set color of pixel to fillColor.

if ((interiorColor
setPixel (x, vy):
boundaryFill4d (x
boundaryFill4d (x

boundaryFill4 (x ,
boundaryFill4 (x ,

Yy
}T »

1L
1L

fillColor,
fillColor,
fillColor,
fillColor,

* This procedure requires
stacking of neighboring points

int fillColor, int borderColor)

borderColor) :
borderColor) ;
borderColor) ;
borderColor)

considerable

{

More Efficient Algorithm

5 6
0000000000
2 : 0000
o0 o : oo o
1

(a) (c)

ole)

s 000

0000000000

0000 ; 0000
ool 3 oe’e

(b) (d)

Flood—Fill Algorithm

void floodFill4 (int x, int y, int fillColor, int interiorColor)
{

int color:

getPixel (x, y, color);

if (color = interiorColor) {
setPixel (x, y): // Set color of pixel to fillColor.
floodFilld (x + 1, y, fillColor, interiorColor);
floodFill4d (x - 1, y, fillColor, dinteriorColor);
floodFill4d (x, y + 1, fillColor, interiorColor);
floodFilld (x, y - 1, fillColor, interiorColor)

FIGURE 4-30 An area
defined within multiple color
boundaries.

Antialiasing

* Information loss due to under—sampling

2 * 2 + €= Sampling

Positions

FIGURE 4-46 Sampling the
periodic shape in (a) at the indicated

positions produces the aliased
lower-frequency representation
' : in (b).

Antialiasing

o Super—-sampling Straight—-Line Segments

— — — 1 1]
T T RSN R A R
HERERED
//
I | | I [|
2 T Sl T T e B
. . | R e B e e e e et SRS
R S s
TR T B | 48
21 T T T AT T
o o | R S I S R S T
B4R REEN I N S N
i T B e e e R o T T T T
| | |
| | | 20
20 10 11 12 10 11 12
FIGURE 4-47 Supersampling subpixel FIGURE 4-48 Supersampling subpixel
positions along a straight-line segment whose positions in relation to the interior of a line

left endpoint is at screen coordinates (10, 20). of finite width.

Antialiasing

« Sub—pixel Area Sampling
Weighting Masks Line Segments
1 2 1 . L1 _Ji__J__ [N
2 | 4 | 2 J i::::::i:
1 2 1 B "i‘*i“":“ NEEN
Relative 2 10 11 : 12
Weight_s for a grid of 3 by
? subpixels Pixel (10,20) is about 90% covered,

Pixel (10,21) is about 15% covered

e Filtering Technigues

Antialiasing

S) R

Box Filter

(a)

Cone Filter

(b)

(Gaussian Filter

(c)

FIGURE 4-50 Common
filter functions used to
antialias line paths. The
volume of each filter is
normalized to 1.0, and the
height gives the relative
weight at any subpixel
position.

Antialiasing

* Pixel Phasing

FIGURE 4-51 Jagged
lines (a), plotted on the Merlin
9200 system, are smoothed (b)
with an antialiasing technique
called pixel phasing. This
technique increases the
number of addressable points
on the system from 768 by 576
to 3072 by 2304. (Courtesy of
Peritek Corp.)

Antialiasing

 Area Boundaries

I I I I
| ! | |
s e e e e B
/\ e A e e St A		
\ ! ! ! !		
y+1 /‘. S R I		
R N W IS J		
7 EEREEE		
R e e B e R
v e HEEREN
FIGURE 4-53 Adjusting pixel FIGURE 4-54 A 4 by

intensities along an area boundary:.

4 pixel section of a raster
display subdivided into an
8 by 8 grid.

Scan Line 1

Scan Line 2

Subdivided
Pixel Area

FIGURE 4-55 A sub-
divided pixel area with
three subdivisions inside
an object boundary line.

Antialiasing
 Pittway—Watkinson Algorithm

s Y = Ymid = [+ 1)+ b] — (g +0.5) (4-14)
yor1 o
£ p=[mr+1)+bl— (g +05)+ (1 —m) (4-15)
d X, x4l
FGURESS6 Boundary Now the pixel at y; is nearer if p < 1 —m,
edge of a fill area passing . . .
through a pixel grid section. the plxel at yk —|— 1 1S nearer lf p = 1 — M.
L. 2 area=m-x+b—1y +05 (4-16)
Ym0 T Ohrea’ .. .
‘ This is the same as that for p in Eq. 4-15.

FIGURE 4-57 Overlap area of a pixel rectangle, centered at
position (xi, yx), with the interior of a polygon fill area.

	Chapter 4�Attributes of Graphics Primitives
	Attributes
	RGB Color Components
	Color Lookup Tables
	Color Blending
	Color-Blended Fill Regions
	Linear Soft-Fill Algorithm
	Scan-Line Polygon Fill
	Scan-Line Polygon Fill
	Boundary-Fill Algorithm
	Boundary-Fill Algorithm
	More Efficient Algorithm
	Flood-Fill Algorithm
	Antialiasing
	Antialiasing
	Antialiasing
	Antialiasing
	Antialiasing
	Antialiasing
	Antialiasing

