# Unit Quaternions and 3D Rotations 

Myung-Soo Kim
Seoul National University
http://cse.snu.ac.kr/mskim http://3map.snu.ac.kr

## Quaternions

- Sir William Hamilton discovered quaternions in 1843 as a generalization of complex numbers.
- Instead of one imaginary unit i, three imaginary units $\mathrm{i}, \mathrm{j}, \mathrm{k}$ are used in quaternions
- Each quaternion is represented as

$$
q=w+x i+y j+z k
$$

## Quaternions

- Imaginary units

$$
\begin{gathered}
1 \cdot i=i, \quad 1 \cdot j=j, \quad 1 \cdot k=k \\
i^{2}=j^{2}=k^{2}=-1 \\
i \cdot j=k, \quad j \cdot i=-k \\
j \cdot k=i, \quad k \cdot j=-i \\
k \cdot i=j, \quad i \cdot k=-j
\end{gathered}
$$

## Quaternions

- We may represent the quaternion as a 4-tuple of real numbers: $q=(w, x, y, z)$.
- Given two quaternions:

$$
\begin{aligned}
q_{1}= & \left(w_{1}, x_{1}, y_{1}, z_{1}\right), q_{2}=\left(w_{2}, x_{2}, y_{2}, z_{2}\right), \\
q_{1}+q_{2}= & \left(w_{1}+w_{2}, x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right), \\
q_{1} \cdot q_{2}= & \left(w_{1} w_{2}-\left\langle\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)\right\rangle,\right. \\
& w_{1}\left(x_{2}, y_{2}, z_{2}\right)+w_{2}\left(x_{1}, y_{1}, z_{1}\right) \\
& \left.+\left(x_{1}, y_{1}, z_{1}\right) \times\left(x_{2}, y_{2}, z_{2}\right)\right)
\end{aligned}
$$

## Unit Quaternions

- Unit quaternions are closely related to 3 D rotations. A unit quaternion can be represented as follows:

$$
q=(w, x, y, z)=(\cos \theta, \sin \theta(a, b, c))
$$

where

$$
\begin{aligned}
(a, b, c) & =\frac{(x, y, z)}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
\theta & =\arctan \left(\frac{\sqrt{x^{2}+y^{2}+z^{2}}}{w}\right)
\end{aligned}
$$

## 3D Rotations

- The unit quaternion

$$
q=(\cos \theta, \sin \theta(a, b, c)) \in S^{3}
$$

represents the rotation by angle $2 \theta$ about an axis $(a, b, c) \in S^{2}$.

- The rotation moves $(\alpha, \beta, \gamma) \in R^{3}$ to $(0, \bar{\alpha}, \bar{\beta}, \bar{\gamma})=(\cos \theta, \sin \theta(a, b, c))$
$\cdot(0, \alpha, \beta, \gamma) \cdot(\cos \theta,-\sin \theta(a, b, c))$


## Rotation Matrix

$$
\begin{aligned}
&(w, x, y, z) \cdot(0, \alpha, \beta, \gamma) \cdot(w,-x,-y,-z) \\
&=(-(x \alpha+y \beta+z \gamma), w(\alpha, \beta, \gamma)+(x, y, z) \times(\alpha, \beta, \gamma)) \cdot(w,-x,-y,-z) \\
&=(-w(x \alpha+y \beta+z \gamma)+w(\alpha x+\beta y+\gamma z), \\
&(x \alpha+y \beta+z \gamma)(x, y, z)+w^{2}(\alpha, \beta, \gamma) \\
&+w(x, y, z) \times(\alpha, \beta, \gamma)-w(\alpha, \beta, \gamma) \times(x, y, z) \\
&=((x, y, z) \times(\alpha, \beta, \gamma)) \times(x, y, z)) \\
&\left(x^{2} \alpha+x y \beta+x z \gamma, x y \alpha+y^{2} \beta+y z \gamma, x z \alpha+y z \beta+z^{2} \gamma\right) \\
&\left(w^{2} \alpha,\right. \\
&(x y \beta \gamma-2 w z \beta, \quad 2 w z \alpha-2 w x \gamma, \\
&2 w x \beta-2 w y \alpha) \\
& w^{2} \beta,\left.w^{2} \gamma\right) \\
& x y \alpha+y z \gamma-x^{2} \beta-z^{2} \beta, \\
&\left.\left.x z \alpha+y z \beta-x^{2} \gamma-y^{2} \gamma\right)\right)
\end{aligned}
$$

## Rotation Matrix

$$
\begin{aligned}
&(w, x, y, z) \cdot(0, \alpha, \beta, \gamma) \cdot(w,-x,-y,-z) \\
&=\left(0,\left(x^{2} \alpha+x y \beta+x z \gamma, x y \alpha+y^{2} \beta+y z \gamma, x z \alpha+y z \beta+z^{2} \gamma\right)\right. \\
&\left(w^{2} \alpha,\right. w^{2} \beta, \\
&(2 w y \gamma-2 w z \beta, \quad 2 w z \alpha-2 w x \gamma, \quad 2 w x \beta-2 w y \alpha) \\
&\left(x y \beta+x z \gamma-z^{2} \alpha-y^{2} \alpha,\right. \\
& x y \alpha+y z \gamma-x^{2} \beta-z^{2} \beta, \\
&=\left.\left.x z \alpha+y z \beta-x^{2} \gamma-y^{2} \gamma\right)\right) \\
&\left(0,\left(x^{2}+w^{2}-y^{2}-z^{2}\right) \alpha+(2 x y-2 w z) \beta+(2 x z+2 w y) \gamma,\right. \\
&(2 x y+2 w z) \alpha+\left(y^{2}+w^{2}-x^{2}-z^{2}\right) \beta+(2 y z-2 w x) \gamma \\
&\left.(2 x z-2 w y) \alpha+(2 y z+2 w x) \beta+\left(w^{2}+z^{2}-x^{2}-y^{2}\right) \gamma\right)
\end{aligned}
$$

## Rotation Matrix

$$
\begin{aligned}
& (w, x, y, z) \cdot(0, \alpha, \beta, \gamma) \cdot(w,-x,-y,-z) \\
= & \left(0,\left(x^{2}+w^{2}-y^{2}-z^{2}\right) \alpha+(2 x y-2 w z) \beta+(2 x z+2 w y) \gamma,\right. \\
& (2 x y+2 w z) \alpha+\left(y^{2}+w^{2}-x^{2}-z^{2}\right) \beta+(2 y z-2 w x) \gamma, \\
& \left.(2 x z-2 w y) \alpha+(2 y z+2 w x) \beta+\left(w^{2}+z^{2}-x^{2}-y^{2}\right) \gamma\right) \\
{\left[\begin{array}{c}
\bar{\alpha} \\
\bar{\beta} \\
\bar{\gamma}
\end{array}\right]=} & {\left[\begin{array}{ccc}
x^{2}+w^{2}-y^{2}-z^{2} & 2 x y-2 w z & 2 x z+2 w y \\
2 x y+2 w z & y^{2}+w^{2}-x^{2}-z^{2} & 2 y z-2 w x \\
2 x z-2 w y & 2 y z+2 w x & w^{2}+z^{2}-x^{2}-y^{2}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right] } \\
= & {\left[\begin{array}{ccc}
1-2 y^{2}-2 z^{2} & 2 x y-2 w z & 2 x z+2 w y \\
2 x y+2 w z & 1-2 x^{2}-2 z^{2} & 2 y z-2 w x \\
2 x z-2 w y & 2 y z+2 w x & 1-2 x^{2}-2 y^{2}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right] }
\end{aligned}
$$

## Rotation Matrix

- Each row/column is a unit vector.
- Rows/columns are mutually orthogonal each other.
- The determinant of rotation matrix is 1 .
- Remark:

1. $R_{-q}=R_{q}$.
2. If $q_{1}, q_{2} \in S^{3}$, then $q_{2} \cdot q_{1} \in S^{3}$.
3. $R_{q_{2}} R_{q_{1}}=R_{q_{2} \cdot q_{1}}$.

## Quaternion Calculus

Given $q(t) \in S^{3}$,

$$
q^{\prime}(t)=(0, v(t)) \cdot q(t),
$$

for some $v(t) \in R^{3}$.


## Angular Velocity

The rotated point $p(t)=R_{q(t)}(p)$ is in a sphere with radius $\|p\|$ and center ( $0,0,0$ ):

$$
(0, p(t))=q(t) \cdot(0, p) \cdot \overline{q(t)}
$$

Differentiating the above, we get

$$
\begin{aligned}
\left(0, p^{\prime}(t)\right) & =(0,2 v(t)) \cdot(0, p(t)) \\
& =(0,2 v(t) \times p(t))
\end{aligned}
$$

which means $\omega(t)=2 v(t)$.

