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1. Introduction 

The problem of avoiding collisions when operating 
on computer models of physical objects is central to 
model-based manipulation systems. This paper describes 
an algorithm for planning safe, that is collision-free, 
paths for a polyhedral object among similarly described 
obstacles. 1 The algorithm is required to: 

(1) find safe paths that might involve going near ob- 
stacles, and 

(2)  guarantee that these paths are short relative to a 
prespecified distance metric. 

The simplest collision avoidance algorithms fall into 
the generate and test paradigm. A simple path from start 
to goal, usually a straight line, is hypothesized and then 
the path is tested for potential collisions. If collisions are 
detected, a new path is proposed, possibly using informa- 
tion about the detected collision to help hypothesize the 
new path. This is repeated until no collisions are detected 
along the path. Roughly, the three steps in this type of 
algorithm are: 

(1) calculate the volume swept out by the moving ob- 
ject along the proposed path, 

(2)  determine the overlap between the swept volume 
and the obstacles, and 

(3) propose a new path. 

The second step, determining the overlap between the 
swept volume and the obstacles, is also known as an in- 
tersection or interference calculation [2, 3]. Current com- 
puter modeling techniques employ large numbers of sim- 
ple surfaces to model accurately even the most common 
objects. It can be quite difficult to determine whether two 
such models overlap. This general method, which we will 
call the swept volume method, has a more fundamental 
drawback. The problem is in the relationship between the 
se.cond and third steps. Each proposed path provides 
only local information about potential collisions, for ex- 
ample, the shape of the intersections of the volumes in- 
volved, or the identity of the obstacle giving rise to the 
collision. This information suggests local path changes 
but is not sufficient to determine when a radically differ- 
ent path would be better. This lack of a global view can 
result in an expensive search of the space of possible 
paths with a very large upper bound on the worst case 
length of the path. 

A radical alternative to the swept volume method is 
to compute explicitly the constraints on the position of 
the moving object relative to the obstacles. The desired 
trajectory is the shortest path which satisfies all the posi- 
tion constraints. If the objects are modeled as collections 
of convex polyhedra, the position constraints can be 
stated in terms of the position of the vertices of the mov- 

1 We will henceforth use the term "polyhedron" for closed 
figures bounded by "flats" in two or three dimensions. 
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ing object relative to the planes of the obstacle surfaces. 
The trajectory problem can then be posed as an optimi- 
zation problem as in Ignat'yev [5]. The difficulty with 
this formulation is that these position constraints, al- 
though linear, do not all apply simultaneously. It is not 
necessary for each point on the moving object to be out- 
side all the planes of the obstacles; it is sufficient for each 
point to be outside at least one of the planes of each ob- 
stacle. This property makes traditional linear optimiza- 
tion methods inapplicable. 

The algorithm presented in this paper is closely re- 
lated to the optimization approach. The constraints on 
the position of an arbitrary reference point on the mov- 
ing object are computed. Polyhedral obstacles in two or 
three dimensions give rise to sets of polyhedral forbid- 
den regions; that is, regions corresponding to positions 
of the reference point where collisions would occur. This 
transformation reduces the problem of finding a safe 
path for the polyhedron to the simpler problem of find- 
ing a safe path for a point. This last task is accomplished 
by finding a path through a graph connecting vertices of 
the forbidden regions. 

The technique of computing the position constraints 
on an object as constraints on a reference point is ex- 
tremely powerful and has been applied independently to 
different problems. It has been used by Udupa [9] for 
planning safe paths for computer-controlled manipula- 
tors, by Lozano-Perez [6] for identifying feasible grasp 
points on an object, and by Adamowicz and Albano [1] 
for two-dimensional template layout. 

Udupa uses a simple "growing" transformation on 
obstacles to compute approximations to the forbidden 
regions for the three-dimensional reference point of a 
three degree of freedom subset of a manipulator. The 
system maintains a variable resolution description of the 
legal positions of the reference point (the ]ree space). 
Safe paths for the subset manipulator are found by re- 
cursively introducing intermediate goals into a straight 
line path until the complete path is in free space. This 
method has two drawbacks: 

(1) Because the complete manipulator has more than 
three degrees of freedom, the three-dimensional for- 
bidden regions cannot model all the constraints on 
the manipulator. When a trajectory fails, Udupa's 
system makes a correction using manipulator-de- 
pendent heuristics. The use of heuristics tends to 
limit the performance of the algorithm in cluttered 
spaces. 

~ 2 )  The recursive path finder uses only local informa- 
tion to determine a safe path and therefore suffers 
from some of the same drawbacks as the swept vol- 
ume method. 

The algorithm presented in this paper uses a more 
accurate growing operation to compute the forbidden 
regions in both two and three dimensions. It introduces 
a graph searching technique for path finding which pro- 

duces optimum two-dimensional paths when only trans- 
lations are involved. This technique is then generalized 
to deal with three-dimensional obstacles and extended to 
deal uniformly with more than three degrees of freedom. 
The resulting algorithm no longer guarantees optimum 
paths. This algorithm has been used to plan safe trajec- 
tories for a seven degree of freedom manipulator. These 
trajectories have been successfully executed. 

A detailed survey of previous work in collision 
avoidance, specifically in connection with computer- 
controlled manipulators, can be found in Udupa [9]. 

The nature of the models used for the obstacles af- 
fects the details of any collision avoidance algorithm. 
For concreteness, the detailed discussions and examples 
in this paper assume that all objects are modeled as sets 
of, possibly overlapping, convex polyhedra. Any object 
can be modeled to any desired degree of accuracy in this 
fashion. A method for finding collision-free paths for a 
single convex polyhedron among sets of convex poly- 
hedra can be simply extended to plan safe paths for a 
complex moving object among complex obstacles. The 
extension involves finding the constraints due to each of 
the convex components of the moving object relative to 
each of the components of all obstacles. The constraints 
for the composite moving object are the union of the con- 
straints on its components. 

The collision avoidance algorithm is defined for three 
dimensions. However, the presentation is easier to follow 
in two dimensions; for clarity the next sections first de- 
velop the complete algorithm for the two-dimensional 
case and then consider the extension to three dimensions. 
Section 2 presents a simple form of the algorithm for the 
case of a polygonal object translating in the plane among 
polygonal obstacles. Section 3 considers the effect of al- 
lowing the moving object to rotate as well as translate. 
Section 4 deals with more complex moving objects with 
more degrees of freedom. Section 5 discusses generaliza- 
tion to three dimensions. Discussion of the two steps of 
the algorithm that are directly affected by the choice of 
modeling methodology is relegated to the appendices. 
These steps will be functionally described in the body of 
the paper. 

2. Collision Avoidance on the Plane 

Consider the problem, shown in Figure 1, of moving 
a point object A from position S to position G while 
avoiding the obstacles (shown shaded); the shortest col- 
lision-free path from S to G is also shown. The important 
property of this path is that it is composed of straight 
lines joining the origin to the destination via a possibly 
empty sequence of vertices of obstacles. In the case of 
motion in the plane with arbitrary polygonal objects, the 
shortest collision-free path connecting any two accessible 
points always has this property. 

The undirected graph VG(N, L) is defined: The node 
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Fig. 1. Fig. 3(a).  
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set N is V u (S, G} where V is the set of all vertices of 
obstacles and the Link set L is the set of all links (n~, nj) 
such that a straight line connecting the ith element of N 
to the jth does not overlap any obstacle. The graph 
VG(N, L) is called the visibility graph (VGRAPH) of N 
since connected vertices in the graph can see each other. 
The VGRAPH is shown in Figure 1. The shortest colli- 
sion-free path from S to G on the plane is the shortest 
path in the VGRAPH from the node corresponding to S 
to that corresponding to G when the euclidean metric is 
used on the links. We will call this method for finding 
collision-free paths for a point by finding the shortest 
path in a visibility graph the VGRAPH algorithm. This 
method was used for navigating SHAKEY [8], an early 
robot vehicle, and is also described in some detail in 
Ignat'yev [5]. 

The simplicity of the VGRAPH algorithm stems 
from the fact that the moving object A is a point. This 
is a good approximation for moving objects which are 
small in relation to the obstacles, but causes problems 
otherwise, lgnat'yev [5, p. 241] puts it as follows: 

The robot begins to move from the point y0 (S in our example) 
along the direction to the xla (a vertex). Here he must consider 
his dimensions in order not to run into the obstacles and walls. 

This paper shows how a more general form of the colli- 
sion avoidance problem can be reduced to the VGRAPH 
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problem. In other words, it concerns how the robot 
"must consider his dimensions." 

A simple generalization of the problem in Figure 1 is 
to make the moving object A a circle with nonnegligible 
radius rA. The VGRAPH algorithm can be adapted to 
this situation by moving the vertices away from the 
obstacles so that they are at least ra away from all the 
sides (Figure 2). Moving A so that its center point moves 
through the new displaced vertices will still produce a 
minimum distance, collision-free path. Notice, however, 
that the path found is different from that in Figure 1. 
This technique of displacing the vertices was also used 
in SHAKEY [8]. 

The VGRAPH algorithm requires that the moving 
object be a point; the obstacles then represent the for- 
bidden regions for the position of that point. If the mov- 
ing object is not a point, a new set of obstacles must be 
computed which are the forbidden regions of some ref- 
erence point on the moving object. These new obstacles 
must describe the locus of positions of this reference 
point which would cause a collision with any of the 
original obstacles. The displaced vertices of Figure 2 are, 
in fact, approximations to the vertices of these new ob- 
stacles when the reference point is the center of A. 

The operation of computing a new obstacle O' from 
an original obstacle O and a moving object A will be 
called growing 0 by A. This name reflects the fact that 
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the obstacles are being grown so that the moving object 
can be shrunk to the reference point. The result of grow- 
ing a set of obstacles by A will be indicated by GOS(A), 
i.e., the Grown Obstacle Set of ,4. Note that the growing 
operation is closely related to that of deriving the path of 
a machine tool to cut out a part. 

Consider the situation in Figure 3(a). The same ob- 
stacles in Figures 1 and 2 are shown but the moving 
object ,4 is now a rectangular solid. Figure 3(b) shows 
the obstacles after they have been grown by ,4. It also 
shows the shortest collision-free path for ,4's reference 
point from S to G. This figure demonstrates how the 
process of growing obstacles allows representing A as a 
point. Notice that the boundary of the obstacle space is 
treated as an obstacle and is also grown, thus avoiding 
paths which involve moving outside the space. 

The growing operation was defined as computing the 
locus of positions of the moving object's reference point 
that would cause a collision with a given obstacle. The 
position of the moving object has been interpreted as its 
(x, y) position, i.e., the grown obstacles are polygons in 
(x, y) space. This is an arbitrary but natural choice. Dif- 
ferent types of moving objects would call for different 
choices. Figure 4(a) shows one such case in an (x, y) co- 
ordinate system. The moving object `4 can rotate about a 
fixed point and can change length. This defines a polar 
coordinate system (r, o~). Figure 4(b) shows the region of 
the (r, o~) space which is forbidden to the tip of ,4 by the 
presence of the obstacle in Figure 4(a); an alternative 
way of representing this region is shown in (x, y) coordi- 
nates in Figure 4(c). The choice of representation de- 
pends on: 

(1) the ease of computing the forbidden regions, i.e., 
growing the obstacles, versus 

(2) the ease of building the VGRAPH from the grown 
obstacles. 

The use of polyhedra as the basic unit of shape de- 
scription influences our choice of obstacle representa- 
tion. Polyhedra (polygons when on the plane) have 
boundaries which are linear equations in the coordinate 
variables. This property makes them computationally 
attractive. In this section we have represented objects as 
polygons in a planar cartesian coordinate system. The 
natural choice is to express the grown obstacles in the 
same space, thus making the growing operation a map- 
ping from polyhedra to polyhedra. Notice that in Figure 
4(b)  the object O was interpreted as a polygon in (x, y) 
space and the resulting grown obstacle O' in (r, o~) is not 
a polygon in that space. 

Another factor in the choice of obstacle representa- 
tion is the shape of the path between two nodes in a 
VGRAPH. A link connecting two nodes in the VGRAPH 
implies that the path between the corresponding loca- 
tions does not overlap any of the obstacles. Paths have 
so far been shown as straight lines in cartesian space; 
since the grown obstacles were in this coordinate space, 
the use of straight lines simplifies the detection of over- 
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lap. Of course, paths could be more complicated curves 
which are best expressed in different coordinate systems. 
For  example, the object in Figure 4 might move in 
straight lines in the (r, a) system. In that case it might be 
more efficient to use the polar form of the grown ob- 
stacles in detecting overlap. 

The choice of representation for the grown obstacles 
depends on the geometric details of the application do- 
main. The choice should be made so as to simplify the 
overall computation. For  the sake of simplicity the next 
section will continue to assume that the grown obstacles 
are polygons in (x, y) space. 
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Fig. 5. Fig. 6. 
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3. The Effect of Rotation 

It is important to notice that the growing operation as 
shown in Figures 2 and 3 is sensitive to the orientation of 
A. This was not apparent in Figure 2 because the moving 
object was a circle. The orientation dependence follows 
from the fact that a grown obstacle is defined as the for- 
bidden region for a reference point. The position of a 
point on the plane can encode only two degrees of free- 
dom, whereas differentiating the legality of two posi- 
tions of A with different orientations requires at least 
three degrees of freedom. Figure 5 shows that a different 
orientation of A from that in Figure 3 will produce dif- 
ferent grown obstacles and a different path. To make the 
orientation explicit, we will denote the result of growing 
all the obstacles with a moving object A, whose orienta- 
tion parameter  is the angle o~, GOS(A,).  The set of ver- 
tices of these grown obstacles will be called V,. 

To summarize, any position of A at orientation ,~ for 
which A's reference point is outside all the elements of 
the grown obstacle set is free of collisions. The sides of 
each obstacle in GOS(A,)  are computed by tracing the 
path of A's  reference point around each of the original 
objects while keeping A in contact with the obstacle. Be- 
fore two objects collide they must first touch; therefore 
any position of the reference point that would cause a 
collision must be inside the obstacle, and any position 
outside must be safe. Clearly this condition presupposes 
that the orientation of A does not change. 

Consider the problem of moving object A from po- 
sition S with orientation o~ to G with a different orienta- 
tion ft. A safe trajectory cannot be found by simply 
computing a path that is free of collisions in GOS(A,)  
and GOS(A~) since, in changing the orientation f rom a 
to/3, A must pass through the whole range of intermedi- 
ate orientations. One way to find a path requires knowing 
what positions on the plane will allow the desired rota- 
tion to take place. The algorithm can then plan a path 
from the start to one of these positions, rotate to the 
desired orientation, and move in that orientation to the 
goal. 
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For  a position to allow a change in orientation there 
must be no overlap between the rotating object in any of 
its intermediate orientations and any of the obstacles. 
Figure 6 shows the area that A traverses in going from 
orientation a to fl; this area may be approximated by 
another polygon A t,. Ca shown rectangular for simplicity. 
This new object, called an envelope,  can be used to grow 
a new obstacle set GOS(A t~, m), also shown in Figure 6, 
which represents the forbidden regions for the reference 
point of A in any of the orientations within the interval 
[a,/3]. We will refer to this as a transition obstacle set. 
By analogy to the vertex set V,, the set Vt,, ~ represents 
the set of vertices of obstacles in the transition obstacle 
set. In general we can associate with all the elements of 
a vertex set an orientation interval (possibly singular) as 
well as a position. 

The problem in Figure 6 can now be solved by: 

(1)  finding a path starting with orientation a at S which 
avoids the obstacles in G O S ( A , )  and which ends at 
a point clear of  the obstacles in GOS (A t-, ~ ), 

(2) rotating to orientation fl, and 
(3) f inding a pa th  to G avo id ing  the obs tac les  in 

GOS(A~) .  

This can be stated as a V G R A P H  problem of finding the 
shortest path from S to G in a visibility graph defined as 
follows: 

VG,~, t~ (N,, 6, L, ,  ~) 

where 

N.,~ = Vt~,~l U Vt~ ,~  U Vt~ ,61 
V(~,.~ = V .  u (S} 
Vr~,~l = V~ U {G} 
Vt-, ~1 defined as above 

and 

/_,~,, ~ = { ( n .  ns)} 

n~ ~ Vta,~ and nj ~ Vtc, aj where a, b, c, d are either a or fl 
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such that the following visibility conditions hold on the 
link: 

(1) the orientation intervals [a, b] and [c, d] must not 
be disjoint, 

(2)  n~ is outside all the obstacles in GOS(A Ea, ~j), 
(3)  nj is outside all the obstacles in GOS(A to. dl), 
(4) the path from n~ to ni either: 

(a)  does not overlap any obstacle in GOS(A ta. ~1), 
or 

(b) does not overlap any obstacle in GOS(A [c, eI)- 

A solution path in VG< ~ is a sequence of nodes start- 
ing at S and ending at G: 

S, n~, n 2 , . . . ,  nk, a 

in which adjacent nodes are connected by a link in L~, ~. 
Each n~ e Vt~, ~,1 is defined such that if n~ is outside all 
obstacles in GOS(A E~. bl), then the reference point of the 
moving object A can be at position nj in any orientation 
within the interval [a, b] without danger of collisions. Fol- 
lowing the link from ni to nj+~ means that the reference 
point of A must make the corresponding translation. 
Also, if nj and ni + 1 belong to different vertex sets, Via, ~1 
and Vtc, ~1 respectively, then a change of orientation may 
also be required. The conditions on L,, ~ require that the 
orientation intervals corresponding to the endpoints of a 
link must not be disjoint. This means that there is some 
orientation x, such that if a _< b and c _< d then max(a, c) 
< x < min(b, d), for which A can safely be at either node 
of the link. Moving along the link requires first rotating 
to the orientation x and then translating from the first 
node to the second. Since the translation happens in an 
orientation compatible with both nodes of the link, the 
visibility conditions on the link require only checking for 
overlap with the obstacles in the obstacle set of either one 
of the nodes. Alternatively, if the path from n~ to nj+l is 
outside all obstacles in both GOS(A t~, ~l) and GOS(A t~.. d~), 
then the rotation may take place in conjunction with the 
translation along the link. 

The use of transition sets, e.g., GOS(A t-, ~]), has two 
important drawbacks. The shortest solution path in 
VG< ~ is no longer guaranteed to be an optimum solution 
to the original problem, and failure to find a solution 
path in the V G R A P H  does not necessarily mean that no 
safe trajectory exists. The reasons are twofold. The first 
and most basic is that paths found in this V G R A P H  will 
change the orientation of the moving object only at loca- 
tions where the full rotation can be performed. If the 
optimum path involves traversing a narrow passage 
where the orientation of A must be within a small sub- 
range of the orientations between ,~ and/3, then this path 
could not be a solution path in this version of the 
V G R A P H  algorithm. Secondly, even if the first problem 
were avoided, the current formulation considers orienta- 
tions only in the range [~, /3]; it could not negotiate a 
passage where the moving object could only fit at an 
orientation outside the specified range. The latter prob- 
lem can be solved simply by expanding the orientation 

Fig. 7. 
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interval, but only at the expense of making the former 
problem worse. 

The two problems mentioned above can be alleviated 
by replacing the single transition obstacle set, GOS 
(A [(,, t~]), by the union of several other obstacle sets, each 
generated with a smaller orientation interval for the mov- 
ing object. In this fashion the range of legal orientations 
can also be extended beyond the interval [a, /3]. As 
the number of transition obstacle sets increases, the 
V G R A P H  becomes a better match to the original prob- 
lem. Unfortunately, the computational burden also in- 
creases rapidly. Each new obstacle set requires growing 
all the obstacles with the moving object in a new con- 
figuration, though the growing operation can be speeded 
up by using approximations, as will be shown later. Also, 
the added vertices from the extra obstacle sets make 
searching the visibility graph much more time consum- 
ing. Alternatively, it may be possible to derive auto- 
matically transition sets to handle narrow passages spe- 
cifically, and combine these with wider-range transition 
sets. 

4. More Degrees of Freedom 

Transition obstacle sets can be used whenever the 
moving object has more degrees of freedom than can be 
represented by a point in the obstacle coordinate space. 
The only requirement is that it be possible to compute 
an envelope At,  ' ~1 which is an object of the same type as 
A, e.g., a polygon, such that any point inside an A=, 
x < z _< y, is also inside A tx, ~J]. This object then can be 
used in the growing operation to generate a transition 
obstacle set. There are no other restrictions on the nature 
of the parameter  range Ix, y]; in particular, it need not be 
an orientation range and both x and y may also be vec- 
tors. A point outside all of the obstacles in GOS(A tx, yl) 
indicates a position where each of A~'s configuration 
parameters, z~, can safely take on values such that 
x~ < z~ _< yi. 

565 Communications October 1979 
of Volume 22 
the ACM Number 10 



Figure 7 repeats the example of Figure 4 except that 
now the moving object can translate in x and y as well as 
rotate and change its length. The choice of a coordinate 
system for the grown obstacles will also determine which 
of the coordinate variables is to be used for the config- 
uration parameters. For  example, if the grown obstacles 
are represented as polygons in (x, y), then (r, a) are con- 
figuration parameters and vice-versa. 

Configuration parameters can also be used to deal 
with a moving object whose shape can change due to 
changes in the relative positions of its components. The 
object shown in Figure 8 is composed of two rectangles 
that are free to rotate about a common point. The shape 
of this object relative to a stationary obstacle can be 
described by: 

(1)  the shape of its components, 
(2)  their relative displacements, 
(3)  the two angles 0 and O indicated in Figure 8. 

In this example only the angles can change during a 
motion; therefore the obstacle set for this moving object 
must be parameterized by the value of both 0 and p. Gen- 
erally the configuration parameters describe not only the 
global orientation or position of the object but also the 
relative positions of its components. 

In general, objects need not be grown in the full di- 
mensional configuration space; instead, repeated use is 
made of operations on lower dimensional, partitioned, 
configuration spaces which allows the growing operation 
to work in a convenient subspace of the full configuration 
space. The VGRAPH algorithm described in Sections 2 
and 3 remains unchanged except that the scalar para- 
meters and intervals are replaced by vector parameters 
and intervals. 

S. Collision Avoidance in Three Dimensions 

The VGRAPH algorithm has so far been presented 
as an algorithm for collision avoidance on the plane. 
This section examines how three-dimensional obstacles 
affect the algorithm. This generalization does not affect 
the statement of the algorithm but does affect the details 
of the obstacle growing and graph searching. These sub- 
jects are discussed irt the appendices. 

The generalization to three dimensions has an un- 
fortunate side effect. The shortest path around a poly- 
hedral obstacle does not in general traverse only vertices 
of the polyhedron (Figure 9). That  is, the shortest path in 
a VGR AP H whose node set contains only vertices of the 
grown obstacles is not guaranteed to be the shortest colli- 
sion-free path. In general, the shortest path will involve 
going via points on edges of the obstacles. Our approach 
is to introduce additional vertices along edges of the 
grown obstacles so that no edge is longer than a prespe- 
cified maximum length. This method generally results in 
a good approximation to the optimum path. 

The use of three-dimensional obstacles also has a 

Fig. 8. 

Fig. 9. 

significant effect on the execution time of the algorithm. 
The three-dimensional growing operation is much more 
time consuming than the corresponding operation in two 
dimensions. Grown obstacles in three dimensions are 
generally much more complex than the underlying ob- 
jects (Appendix 1). The larger vertex sets also increase 
the time necessary to search the visibility graph. These 
effects make the use of approximations necessary for 
practical applications. 

A great saving can be realized by using the detailed 
growing operation sparingly. Many application domains 
have the property that the moving object need only be 
close to obstacles at a small number of points along the 
path. These care points usually include the start and goal 
of the path. Elsewhere the requirements on the path are 
less strict; in fact, it is often undesirable to move close to 
the obstacles when away from the care points. This prop- 
erty can easily be exploited in the V G RA P H  algorithm; 
instead of executing the detailed growing operation on 
each of the known obstacles, it need only be executed on 
those obstacles close to the care points. Away from the 
care points drastic approximations can.safely be used. 
Complex objects, built up from many polyhedra, can be 
approximated by a single enclosing polyhedron. The 
moving object can be similarly approximated so as to 
further simplify the process. In addition, a very simple 
form of the growing operation (Appendix 1 ) can be used 
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rithm is to use heuristics in the graph search operation. 
This is discussed briefly in Appendix 2 which deals with 
searching the VGRAPH. 

6. Summary and Discussion 

This paper has shown how the simple visibility graph 
algorithm used for navigation of SHAKEY [8] can be 
extended to more general collision avoidance problems. 
The mechanism necessary to achieve this involves grow- 
ing the obstacles and shrinking the moving object to a 
point. This approach has the desirable property of pro- 
viding two subproblems, growing the obstacles and 
searching a visibility graph, which can be pursued inde- 
pendently. A description of our current approach to 
these problems is included in the appendices. 

The most important remaining problem with the 
VGRAPH algorithm is the quantization of configuration 
parameters into intervals. Paths that require almost con- 
tinuous changes of orientation as well as position require 
small quantization intervals, resulting in many transition 
obstacle sets, and are therefore expensive to compute. 

The VGRAPH algorithm as described in this paper 
has been implemented in PL/1  on an IBM 370/168.  It 
has been used to plan collision-free trajectories for a 
seven degree of freedom computer-controlled manipu- 
lator [10]; these trajectories have been successfully exe- 
cuted in the laboratory. 

which, at the expense of accuracy, is faster and results in 
simpler objects. 

The key to using this approximation technique is an 
effective way of determining which objects are close to 
the care points. Clearly a care point is close to an object 
if it is inside or close to one of the sides of the grown 
obstacle resulting from it. This means that the moving 
object when located at the care point is either inside or 
close to a side of the object. Approximating both the 
moving and the stationary objects will cause the care 
point to be inside the grown obstacle. This condition can 
be used as a criterion for careful growing. When the 
moving object is large relative to the obstacles, approxi- 
mating it as a single object results in detailed growing of 
too many obstacles. The larger the moving object, the 
worse a simple approximation is likely to be. In particu- 
lar, some part of the moving object, relatively far from 
the care point, will cause the grown obstacle to include 
the care point. The solution is to have a hierarchic de- 
composition of the moving object; that is, if the test fails 
for the roughest description, then use a slightly better 
approximation. In this way the source of potential colli- 
sion can be better isolated. The other components of the 
moving object which are not involved need not be con- 
sidered carefully. Udupa [9] proposed a similar variable 
level of detail approximation scheme. 

Another way to increase the efficiency of the algo- 
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Appendix 1: Growing the Obstacles 

This appendix  describes the componen t  of the 
VGRAPH algorithm that computes from an obstacle de- 
scription the shape of the forbidden regions for the posi- 
tion of the moving object's reference point. This is called 
growing the obstacle. The ideas will be developed in two 
dimensions and then extended to their three-dimensional 
counterparts. In the initial two-dimensional case the de- 
grees of freedom used for growing will be the x and y 
position of the moving object. 

Consider growing a polygonal obstacle by a circular 
solid as in Figure 10. The simplest growing algorithm 
moves each of the sides of the original obstacle by a con- 
stant amount ra and then intersects the lines to obtain 
the vertices of the grown polygon. The drawbacks of this 
algorithm are twofold: 

(1)  It works well only for moving objects that are 
nearly circular. 

(2) It generates wasted space near pointed corners, as 
seen by the dark shaded regions in Figure 10. This 
problem can be alleviated by clipping the corners 
of the grown polygon. 

This was the form of the growing algorithm used by 
Udupa [9]. 
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A simple variation of this procedure will solve prob- 
lem 1 above. Figure 11 shows a convex polygon O and a 
moving object A; both are rectangular and both are 
aligned with the global coordinate axes. R, the reference 
point of A, coincides with one of the vertices of A. The 
boundary of the forbidden region for the position of A is 
the locus of positions of R for which A is in contact with 
O. This locus defines another convex polygon O' shown 
in Figure 11. Clearly any point inside this polygon im- 
plies a collision between A and O. This grown polygon 
has side nside~ corresponding to each side sidez of the 
original obstacle. The distance from nside~ to side~ is the 
perpendicular distance of R from side~ minus the perpen- 
dicular distance to the point where A would first contact 
sidez. The distance from sidez to this contact point on A 
is the minimum perpendicular distance of all of the ver- 
tices of A from side~. Once the sides are displaced by 
this amount, the lines can be intersected to generate the 
grown polygon. 

This method only makes use of the distance from the 
reference point to the contact point for a side. In poly- 
gons with interior angles of less than a right angle the 
method described above produces wasted space at the 
vertices. This waste can be reduced by simply cutting the 
corner at a conservative distance. A more accurate grow- 
ing procedure can b~ obtained by determining the actual 
locus of motion of R along each side~ as the contact 
point slides along the side. Figure 12(a) shows the line 
segments traced out by this procedure (bold lines). No- 
tice that the line segments do not intersect and that the 
endpoints of these line segments correspond to the posi- 
tion of R when the contact point of A with O is at a 
vertex of O. These positions will be referred to as maxi- 
mal locus points. 

To complete the figure, notice that the locus of R as 
A moves from its contact point with side~ to its contact 
point with the adjacent sides traces successive edges of A 
between the two contact points on A. In the course of 
connecting all the maximal locus points, all the edges of 
A are traced out in reverse order (heavy dashed lines). A 
simple algorithm for growing convex polygons exists 
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which is based on merging a list of displaced edges of O 
with a reverse order list of displaced edges of A. To 
simplify the geometry of the grown object, the locus of 
R between successive contact points can be conserva- 
tively estimated by a straight line c'~j which is parallel to 
the line cu connecting the maximal locus points but dis- 
placed to the position of the point on the actual locus 
furthest from the line c~j as shown in Figure 12(b) .  

The approximate method for growing a convex poly- 
approach is to grow each face of the polyhedron inde- 
pendently and then introduce new faces to complete the 
grown polyhedron. The steps in the process of growing 
a rectangular solid O with a rotated rectangular solid A 
are shown in Figure 13. The locus of R as the contact 
point of A moves along each edge of [ace~ is called the 
maximal locus edge, Figure 13(a). Such edges define po- 
tential new edges for the faces of the grown polyhedron. 
Each edge of O generates two adjacent maximal loci. 
These edges have to be connected in a manner analogous 
to the way in which maximal locus points are connected 
in a grown polygon, Figure 12(b). The edge has to be dis- 
placed to compensate for points on A which are closer to 
O than the plane defined by the two adjacent maximal 
locus edges and passing through the corresponding con- 
tact points. Faces are introduced to connect each pair of 
edges of the grown faces arising from a common edge, 
Figure 13(b). These new faces introduce new edges, each 
of which connects two points on the grown faces arising 
from a common vertex of A. All the edges corresponding 
to a single vertex also define a new set of faces, Figure 
13(c). The total number of faces in a polyhedron grown 
from an object O in this fashion is equal to the sum of 
the numbers of faces, edges, and vertices of O. 

The operation of growing a polyhedron is related to 
an operation known as mixing polyhedra [7]. A mixed 
polyhedron is the set of points which can be expressed as 
a linear combination of points from the two starting poly- 
hedra. A polyhedron isomorphic to a grown obstacle can 
be ob ta inedby  mixing the underlying obstacle with a 
nega t ive  image  of the mov ing  ob jec t ,  as in con-  
volution. 
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Fig. 13(a). 

Fig. 13(b). 

Fig. 13(c).  

Appendix 2: Finding a Path 

A generalized visibility graph VG(N, L) contains a 
node set N and a link set Lsj of links between node pairs 
(ni, nj) for which a visibility function l(n~, nj) is true. A 
node is a representation of a region in an n-dimensional 
parameter  space; for each node the associated region is 
represented by two n-dimensional parameter  vectors 4,1 
and q~z. Individual elements of the difference vector 8 q~ = 
,~1 -- q~z will be zero when the corresponding parameter  
has a fixed value, or nonzero when the parameter  has a 
range of values. 

The path finding problem is defined as: Given a node 
set N with an associated parameter  vector set, a start 
node ns, and a goal node n~, find a sequence of nodes 
from n, to ng, by way of an ordered set of intermediate 

nodes n l , . . . ,  nk, which may be null, such that the visi- 
bility function for each node pair in sequence: 

L1 = l(ns, nl) 
L2 = l(nl, n2) 

, . o  

Zk+l  ~- l(nk, ny) 

is true, and that a cost function 

C = ~c(n~, nj) 

where c(n~, nj) >_ 0 is minimized. 
A direct approach to finding an optimum path is to 

enumerate all possible paths and choose one for which C 
is minimum. For  node sets whose cardinality is of prac- 
tical interest (e.g., > 50) the computational load of the 
direct approach is prohibitive, and more efficient heuris- 
tic based search methods may be used. 

The A* algorithm of Har t  et al. [4] allows use of 
efficient heuristic information. For  each node, an esti- 
mate hhat is made of the cost h to travel from the node to 
the goal. Initially, n~ is placed on a list of candidate 
nodes for examination (the OPEN list). At each step of 
the algorithm, the node with minimum total path cost 
estimate (i.e., actual cost of reaching the node along the 
trial path plus hhat) is moved onto a CLOSE list and its 
minimum cost estimate visible successor nodes are 
placed on the OPEN list. 

Har t  et al. have shown that the A* algorithm finds an 
optimum path when hhat is a lower bound estimate of the 
true cost h. When the estimator for hhat is zero and some 
c(ns, nj) --, =/= 0 n~, nj e N, the estimate gives no heuristic 
information to assist in the choice of a path; as hhat---~h, 
the heuristic information increases and the average num- 
ber of unsuccessful trial paths is reduced. In the context 
of this paper, the lower bound requirement for hhat, i.e., 
hhat <_ h, may be met by assuming l(n~, n,j) to be true and 
computing hhat~ = c(n~, n~j). 

The cost function c(ns, n j) may be tailored to suit the 
requirements of a particular problem environment, for 
example: 

-d i s tance  to be traveled in a subspace of the para- 
meter space; 

- funct ions  of distances in parameter  space, for ex- 
ample, time to complete a change based on allow- 
able rate of change of parameters, with the option 
of selecting the limiting (i.e., slowest )dimension; 

--special costs may be assigned to particular node 
sequence pairs to allow, for example, costs to be 
assigned depending on whether the pair allows the 
motion to proceed without a speed change, as op- 
posed to pairs requiring a change of speed or an 
intermediate halt. 

The form of the visibility function l(n~, n~) depends 
on the semantics of the parameters. Two mutually ex- 
clusive classes of parameters are considered as described 
in Section 3 : 
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- those  that may vary continuously, that is, those em- 
bodied in the growing operation; 

--those that may occupy only discrete ranges, that is, 
those that are represented by transition obstacle 
sets. 

Note that this distinction between continuous and dis- 
crete parameters is an artifact introduced to simplify the 
handling of spaces of high dimensionality (i.e., n > 3) 
and that the partitioning of the parameter set is not 
unique: In general, either linear or rotary motions may 
be represented by continuous or discrete ranges. In the 
case of discrete range parameters, specific values must 
be chosen to enable l and hhat to be evaluated. In all 
cases of parameter change, a path function defines the 
motion effect of the change, as either linear or nonlinear 
motions in parameter space. 

In the formalization for path planning described in 
the body of this paper, an obstacle A is grown under 
some parameter dependent transformation to produce 
GOS(A~1, ,/,2) where (~1, ~2) represents a range of para- 
meters. Three parameters represent continuous motion, 
and the rest represent discrete motions. The visibility 
function is line of sight in three-dimensional orthogonal 
cartesian space, with the provision that visibility is pos- 
sible only when the discrete parameter ranges at the 
start and end of the path segment overlap, and values 
assigned to these parameters are in the overlap region. 

In many practical situations, the computational cost 
of evaluating l is very much greater than that of evalu- 
ating hhat for candidate successor nodes. In such cases 
it is compfftationally efficient to select a candidate suc- 
cessor node in terms of minimum hhat before comput- 
ing I. 
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