Programming \#3: Part II (4190.410)

Due: October 14, 2013

A cubic Bézier curve $C(t)=\sum_{l=0}^{3} \mathbf{b}_{l} B_{l}^{3}(t), 0 \leq t \leq 1$, can be approximated by a polygonal curve $L^{h}(t)$ connecting a sequence of curve points $C\left(t_{i}^{h}\right)=C\left(i / 2^{h}\right)$, for $i=0, \cdots, 2^{h}$, within an approximation error bound (Filip et al., CAGD 1986):

$$
\left\|C(t)-L^{h}(t)\right\| \leq \frac{3}{4} \cdot \frac{1}{4^{h}} \cdot \max \left(\left\|\mathbf{b}_{0}-2 \mathbf{b}_{1}+\mathbf{b}_{2}\right\|,\left\|\mathbf{b}_{1}-2 \mathbf{b}_{2}+\mathbf{b}_{3}\right\|\right)=\epsilon_{h}
$$

More precisely, each line segment $L_{i}^{h}(t),\left(t_{i-1}^{h} \leq t \leq t_{i}^{h}\right)$, approximates the corresponding curve segment $C_{i}^{h}(t)=C(t),\left(t_{i-1}^{h} \leq t \leq t_{i}^{h}\right)$, within the error bound $\epsilon_{h} \geq 0$.

Part I: Design an interactive system that can show the BVH structure (i.e., the AABB tree and the LSS tree) for the Bézier curve $C(t), 0 \leq t \leq 1$. Display the rounded AABB bounding volumes generated by expanding the AABB containing each line segment $L_{i}^{h}(t)$ by ϵ_{h}. Moreover, display the LSS bounding volumes generated by sweeping a disc of radious ϵ_{h} along each line segment $L_{i}^{h}(t)$, for the levels $h=2, \cdots 10$.

Part II: Design an interactive system that can control the position of a query point \mathbf{Q} and the shape of $C(t)$ by dragging the four control points \mathbf{b}_{l}. Moreover, implement a recursive algorithm for computing the projection line from \mathbf{Q} to the nearest point on the curve $C(t)$. Display the bounding volumes that have been used in the search for the nearest point $C(\hat{t})$ by the recursive algorithm.

