A bicubic Bézier surface \(S(u, v) = \sum_{k=0}^{3} \sum_{l=0}^{3} b_{kl} B_{k}^{3}(u) B_{l}^{3}(v), \ 0 \leq u, v \leq 1 \), can be approximated by a dense mesh sampled at the uniform parameters: \(u_i = i/511, v_j = j/511 \), for \(i, j = 0, \cdots, 511 \). Implement a shadow mapping technique for the Bézier surface \(S(u, v) \). You may assume a directional light coming from infinity and the Bézier surface is located above a horizontal plane.

Design an interactive system that can control the shape of \(S(u, v) \) by dragging its control points projected onto the \(xy, yz, \) and \(zx \)-planes. The connected network of 16 control points can be displayed as a wireframe of 24 edges, each connecting two adjacent control points.