
Quiz #4 (CSE4190.410)

November 11, 2013 (Monday)

Name: Dept: ID No:

1. (5 points) Consider a perspective transformation P of 3D points xi to 3D points x′i = Pxi,
for i = 1, 2, 3. Explain why the image x′m = Pxm of the center xm = (x1 + x2 + x3)/3 is not
the same as the center (x′1 + x′2 + x′3)/3 of the three points x′1, x

′
2, x

′
3.

• Let x̂i = [xi, 1]
t, then x̂′i = P x̂i = [w′ix

′
i, w

′
i]
t, for i = 1, 2, 3.

w′i 6= w′j in general, for i 6= j
Let x̂m = [xm, 1]

t = [(x1 + x2 + x2)/3, 1]
t = [x1 + x2 + x3, 3]

t, then
x̂′m = P x̂m = P [x1 + x2 + x3, 3]

t = P x̂1 + P x̂2 + P x̂3 = x̂′1 + x̂′2 + x̂′2
= [w′1x

′
1 + w′2x

′
2 + w′3x

′
3, w

′
1 + w′2 + w′3]

t.
Consequently, x′m = (w′1x

′
1+w

′
2x
′
2+w

′
3x
′
3)/(w

′
1+w

′
2+w

′
3) 6= (x′1+x′2+x′3)/3 in general.

2. (15 points)

(a) (5 points) Design a recursive bottom-up algorithm for constructing a sphere tree for
an open polygonal chain C that connects a sequence of points pi = (xi, yi, zi), for
i = 0, · · · , 2k, for some k > 0. To make life easy, you may split each subchain in the
middle into two pieces with the same number of edges. We may assume a procedure
that can compute the minimum-enclosing sphere of two spheres.

• At the leaf level, the bounding volume is a line segment connecting two adjacent
points pi−1 and pi, for i = 1, · · · , 2k. At this leaf level, there is no approximation
error: ε = 0.

• At each parent of the leaf level, the bounding sphere can be determined as the
minimum enclosing sphere for the triangle of three vertices p2i−2,p2i−1,p2i, for
i = 1, · · · , 2(k−1).
• At other intermediate levels, the bounding sphere can be constructed to be the
minimum enclosing sphere for two bounding spheres of the two child nodes.

(b) (10 points) Design a recursive top-down algorithm for constructing an LSS tree for a
set of disconnected line segments aibi, for i = 0, · · · , 2k, for some k > 0. We may
assume a procedure that can compute the minimum-enclosing LSS bounding volume for
an arbitrary set of discrete points.

• At the root level, the LSS is the minimum-enclosing LSS that bounds the whole set
of points ai,bi, for i = 0, · · · , 2k.
• At an intermediate level, sort the line segments along the direction ~aibi using the
midpoints (ai + bi)/2 of the line segments, and divide the edge set into two groups
and compute the minimum-enclosing LSS for each group.

• Repeat the same procedure recursively until we reach the leaf level where we end
up with only one line segment.

3. (10 points) Fill in the blanks in the following OpenGL program segments taken from HW
#3-4.

1

const int INIT_SIZE = 800;
int width = INIT_SIZE, height = INIT_SIZE;
int angle = 0;
enum {FRONT, UP, LEFT, ROTATE};

void SelectViewport(int view, bool clear)
{

glMatrixMode(GL_PROJECTION);
glLoadIdentity(); (+1)
glOrtho(-width, width, -height, height, -100000, 100000);

if (view == FRONT)
gluLookAt(0, 0, 1, 0, 0, 0, 0, 1, 0);

else if (view == UP)
gluLookAt(0, 1, 0, 0, 0, 0, 0, 0, -1);

else if (view == LEFT)
gluLookAt(1, 0, 0, 0, 0, 0, 0, 1, 0);

else
{

gluLookAt(1, 1, 1, 0, 0, 0, -1, 1, -1); (+2)
glRotatef((float) angle, 0, 1, 0);

}

int w = width / 2;
int h = height / 2;
int x = (view == LEFT || view == ROTATE)? w : 0; (+1)
int y = (view == UP || view == ROTATE)? h : 0;
glViewport(x, y, w, h); (+1)

if (clear)
{

glScissor(x, y, w, h);
glClearColor(view < 2? 0.9f : 1, view % 2 == 0? 0.9f : 1, view > 0 && view < 3? 0.9f : 1, 1);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); (+1)

}
}

void displayCallback()
{

glEnable(GL_SCISSOR_TEST);
for (int view = 0; view < 4; view++)
{

SelectViewport(view, true); (+1)
DrawGrid();
DrawCurves();
if (view != ROTATE)

DrawControlPoints();
}
glDisable(GL_SCISSOR_TEST);

glDepthMask(false);
MinimumDistance();
glDepthMask(true);

glutSwapBuffers();
}

double ToLocalX(int x)
{

return 4*x - width;
}

double ToLocalY(int y)
{

return height - 4*y
}

void motionCallback(int x, int y)
{

if (selectedView == FRONT)
{

controlPoints[selectedCurve][selectedPoint][0] = ToLocalX(x);
controlPoints[selectedCurve][selectedPoint][1] = ToLocalY(y - height/2);

}
else if (selectedView == UP)
{

controlPoints[selectedCurve][selectedPoint][0] = ToLocalX(x);
controlPoints[selectedCurve][selectedPoint][2] = -ToLocalY(y);

}
else if (selectedView == LEFT)
{

controlPoints[selectedCurve][selectedPoint][2] = -ToLocalX(x - width/2); (+1)
controlPoints[selectedCurve][selectedPoint][1] = ToLocalY(y - height/2);

}
}

void idleCallback()
{

if (rotate)
{

angle = (angle + 1) % 360; (+1)
glutPostRedisplay(); (+1)

}
Sleep(20);

}

	quiz4-2013-solution
	quiz-opengl-solution

