Quiz #6 (CSE 400.001)

November 23, 2010 (Wednesday)

- 1. (6 points) It is impossible for a system of linear equations to have exactly two or exactly three solutions. Explain why by answering the following three questions:
 - (a) (2 points) If (x_1, y_1, z_1) and (x_2, y_2, z_2) are two different solutions, what is another one?
 - (b) (2 points) If (x_1, y_1, z_1) , (x_2, y_2, z_2) , and (x_3, y_3, z_3) are three different solutions, what is another one?
 - (c) (2 points) If 25 planes meet at three different points, where else do they meet?

Solution:

(a) $\alpha(x_1, y_1, z_1) + \beta(x_2, y_2, z_2)$, where $\alpha + \beta = 1$.

Any point on the line connecting the two points (x_1, y_1, z_1) and (x_2, y_2, z_2) .

(b) $\alpha(x_1, y_1, z_1) + \beta(x_2, y_2, z_2) + \gamma(x_3, y_3, z_3)$, where $\alpha + \beta + \gamma = 1$.

Any point on the line/plane determined by the three points (x_1, y_1, z_1) , (x_2, y_2, z_2) , and (x_3, y_3, z_3) .

- (c) Case 1 (Collinear points): The 25 planes meet in the line containing the three points. Case 2 (Non-collinear points): The 25 planes overlap in the same plane.
- 2. (8 points) Which rows or columns or matrices do you multiply to find
 - (a) (2 points) the entry in row 3, column 4 of AB?
 - (b) (2 points) the third column of AB?
 - (c) (4 points) the entry in row 1, column 1 of CDE?

Solution:

- (a) (the row 3 of A) and (the colum 4 of B)
- (b) (the matrix A) and (the third column of B)
- (c) (the row 1 of C), (the matrix D), and (the column 1 of E)
- 3. (6 points) Which numbers a and b lead to row exchange? Which make the matrix singular?

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ a & 6 & 3 \\ 0 & b & 6 \end{array} \right]$$

Solution:

$$\begin{bmatrix} 1 & 2 & 3 \\ a & 6 & 3 \\ 0 & b & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 6 - 2a & 3 - 3a \\ 0 & b & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 6 - 2a & 3 - 3a \\ 0 & 0 & 6 - \frac{b}{6 - 2a}(3 - 3a) \end{bmatrix}$$

Row Exchange: a = 3 and $b \neq 0$

Singular: $6 - \frac{b}{6-2a}(3-3a) = 0 \Rightarrow ab - 4a - b + 12 = 0$, which also includes

the case of a = 3 and b = 0.