Quiz \#3 (CSE 400.001)
Monday, October 7, 2013
Name: \qquad E-mail: \qquad
Dept: \qquad ID No: \qquad

1. (5 points) Solve the following equation using the Power Series Method:

$$
(1-x) y^{\prime}-y=0
$$

$$
\begin{align*}
& y=\sum_{m=0}^{\infty} a_{m} x^{m} \\
& y^{\prime}=\sum_{m=1}^{\infty} \operatorname{ma}_{m} x^{m-1}=\sum_{s=0}^{\infty}(s+1) a_{s+1} x^{s} \\
& (1-x) y^{\prime}-y=y^{\prime}-x y^{\prime}-y \\
& =\sum_{s=0}^{\infty}(s+1) a_{s+1} x^{s}-\sum_{s=1}^{\infty} s a_{s} x^{s}-\sum_{s=0}^{\infty} a_{s} x^{s} \\
& =0 \\
& a_{1}-a_{0}+\sum_{s=1}^{\infty}\left[(s+1) a_{s+1}-(s+1) a_{s}\right] x^{s}=0 \\
& \therefore a_{1}=a_{0} \\
& a_{s+1}=a_{s} \text { for } s=1,2,3, \cdots, \\
& \square+1 \\
& \therefore y=\sum_{m=0}^{\infty} a_{0} x^{m}=a_{0} \sum_{m=0}^{\infty} x^{m}=\frac{a_{0}}{1-x} \\
& +1 \quad(|x|<1)
\end{align*}
$$

2. (15 points) Solve the following initial value problem:

$$
\begin{align*}
& y_{1}^{\prime}=-2 y_{1}+y_{2}+2 e^{-t}, \quad y_{1}(0)=2, \\
& y_{2}^{\prime}=y_{1}-2 y_{2}+3 t, \quad y_{2}(0)=0 \text {. } \\
& A=\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right], \operatorname{det}(A-\lambda I)=(\lambda+2)^{2}-1=0 \\
& \lambda_{1}=-3, *^{(1)}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] ; \quad \lambda_{2}=-1, *^{(2)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& Y{ }_{Y} u^{\prime}=\left[\begin{array}{cc}
e^{-3 t} & e^{-t} \\
-e^{-3 t} & e^{-t}
\end{array}\right]\left[\begin{array}{l}
u_{1}^{\prime} \\
u_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
2 e^{-t} \\
3 t
\end{array}\right]=g \\
& {\left[\begin{array}{l}
u_{1}^{\prime} \\
u_{2}^{\prime}
\end{array}\right]=\frac{1}{2} e^{4 t}\left[\begin{array}{l}
e^{-t}-e^{-t} \\
e^{-3 t} e^{-3 t}
\end{array}\right]\left[\begin{array}{l}
2 e^{-t} \\
3 t
\end{array}\right]=\left[\begin{array}{l}
e^{2 t}-\frac{3}{2} t e^{3 t} \\
1+\frac{3}{2} t e^{3 t}
\end{array}\right]} \\
& u_{1}=\frac{1}{2} e^{2 t}+\frac{1}{6} e^{3 t}-\frac{1}{2} t e^{3 t}+c_{1} \\
& u_{2}=t-\frac{3}{2} e^{t}+\frac{3}{2} t e^{3 t}+c_{2} \\
& y=c_{1}\left[\begin{array}{c}
e^{-3 t} \\
-e^{-3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
e^{-t} \\
e^{-t}
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{2} e^{-t}+t e^{-t}+t-\frac{4}{3} \\
-\frac{1}{2} e^{-t}+t e^{-t}+2 t-\frac{5}{3}
\end{array}\right] \\
& y(0)=\left[\begin{array}{c}
c_{1}+c_{2}-\frac{5}{6} \\
-c_{1}+c_{2}-\frac{13}{6}
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right] \\
& \therefore c_{1}=\frac{1}{3}, c_{2}=\frac{5}{2} \\
& y=\frac{1}{3}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] e^{-3 t}+\left[\begin{array}{l}
3 \\
2
\end{array}\right] e^{-t}+\left[\begin{array}{l}
1 \\
1
\end{array}\right] t e^{-t}+\left[\begin{array}{l}
1 \\
2
\end{array}\right] t-\frac{1}{3}\left[\begin{array}{l}
4 \\
5
\end{array}\right]
\end{align*}
$$

