Quiz #2 (CSE 4190.313)

Wednesday, April 7, 2010

Name:	E-mail:
Dept:	ID No:

1. (8 points) Without computing A, find bases for the four fundamental subspaces:

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array} \right] \left[\begin{array}{ccc} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{array} \right]$$

$$\mathbb{D}(C(A)) : \{(1,1,1), (0,1,1), (0,0,1)\}$$

(3)
$$C(A^T)$$
: $\{(1,2,3,4), (0,1,2,3), (0,0,1,2)\}$

$$(\mathcal{P}): \phi \rightarrow basis 7/31/2 empty$$

$$\{(0,0,0)\}$$

2. (4 points) The space of all 2×2 matrices has the four basis "vectors"

$$\mathbf{V}_{\mathbf{j}} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \mathbf{V}_{\mathbf{j}} = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \mathbf{V}_{\mathbf{j}} = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right], \mathbf{V}_{\mathbf{i}} = \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right].$$

For the linear transformation of transposing, find its matrix representation A with respect to this basis.

$$A(V_1) = V_1, A(V_2) = V_3, A(V_3) = V_2, A(V_4) = V_4$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3. (5 points) What are the special solutions to $R\mathbf{x} = \mathbf{0}$?

$$R = \left[\begin{array}{rrrr} 1 & 0 & 1 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

$$x_1 = (-1, -2, 1, 0)$$
 (+3)
 $x_2 = (-2, -3, 0, 1)$ (+2)

$$\chi_{2} = (-2, -3, 0, 1)$$
 (+2)

4. (4 points) For which numbers c and d, does the following matrix A have rank 2?

$$A = \left[\begin{array}{cccc} 1 & 2 & 2 & 0 & 2 \\ 0 & 0 & c & 2 & 2 \\ 0 & 0 & 0 & d & 2 \end{array} \right]$$

C=0 implies
$$rank(A) = 3$$
 (+2)
Thus, $c = 0$ and $d = 2$ (+2)
 $rank(A) = 3$

- 5. (4 points) True or false (give a good reason)?
 - (a) If the columns of A are linearly independent, then $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every \mathbf{b} .
 - (b) A 5×7 matrix never has linearly independent columns.

(a) Halse: Counter Example
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow b \notin C(A)$$
There is no x such that $Ax = b$