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2D Viewing
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FIGURE 6-9 A viewport
at coordinate position (xs, ys)
within a display window.
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2D Viewing Transformation
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FIGURE 6-3 Two-dimensional viewing-transformation pipeline.
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Clipping Window

2
‘e e o
b y y oy .
y world world world | view FIG UdBE Et;-? A Vlewuzlg-
coordinate frame is move
Clion into coincidence with the
A IPPINg F, world frame by (a) applyin
s S~~~ Wind 1 M . y ' pplymg
Yo AN TN meow Yo “ a translation matrix T to
N4 T move the viewing origin to
el / _ the world origin, then (b)
| v N N X view applying a rotation matrix R
Xo x world T Tx, x world /‘R x world to align the axes of the two
World Coordinates ” systems.
I ' '?é[p
FIGURE 6-4 A rotated
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viewing coordinates.
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Normalized Viewport/Square
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A point (xw, yw) in a world-coordinate clipping

window is mapped to viewport coordinates (xv, yv), within a unit

square, so that the relative positions of the two points in their respective

rectangles are the same.
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A point (xw, yw) in a clipping window is mapped to a normalized

coordinate position (Xnorm, ¥norm), then to a screen-coordinate position (xv, yv) in a
viewport. Objects are clipped against the normalization square before the transformation

to viewport coordinates.



Line Clipping
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FIGURE 6-11 Clipping
straight-line segments using a
standard rectangular clipping
window.



Cohen—Sutherland Alg
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Liang—Barsky Algorithm

endpoints

(xOr ]/0), (xendf yend)
AX = Xond — X0

AY = Yend — W0
X = Xxo+ ulx
Y= 1Y+ uAy
O<uc<l

XWmin

ywmin

A TA

U pr = g,

Xo + UAX < XWmax

]/0 + HAy = ywmax

k=1;21314

d1 = Xp — XWmin
(2 = XWmax — X0
d3 = Yo — YWmin

4 = YWmax — Yo



Liang—Barsky Algorithm

XWmin < Xp + UAX < XWmax p1 = —AX, 1 = X0 — XWnin
YWmin < Yo + UAY < YWmax p2 = Ax, (2 = XWmax — X0

ps=—AY,  43= Yo~ YWmin
U pe < g, k=1,234 ps = Ay, g4 = YWmax — Yo

Any line that is parallel to one of the clipping-window edges has px = 0 for the
value of k corresponding to that boundary, where k =1, 2, 3, and 4 correspond
to the left, right, bottom, and top boundaries, respectively. If, for that value of k,
we also find g < 0, then the line is completely outside the boundary and can
be eliminated from further consideration. If g, > 0, the line is inside the parallel
clipping border.

When pr < 0, the infinite extension of the line proceeds from the outside
to the inside of the infinite extension of this particular clipping-window edge. If
pr > 0, the line proceeds from the inside to the outside. For a nonzero value of py,
we can calculate the value of u that corresponds to the point where the infinitely
extended line intersects the extension of window edge k as

_ &
Pk

u (6-20)



Liang—Barsky Algorithm

XWmin < Xp + UAX < XWmax p1 = —AX, 1 = X0 — XWnin
YWmin < Yo + UAY < YWmax p2 = Ax, (2 = XWmax — X0
p3=—AY,  43= Yo~ YWnmin
U pe < g, k=1,234 ps = Ay, 4 = YWmax — Yo
u="1 (6-20)
Pk

For each line, we can calculate values for parameters u; and u, that define that
part of the line that lies within the clip rectangle. The value of 1 is determined by
looking at the rectangle edges for which the line proceeds from the outside to the
inside (p < 0). For these edges, we calculate ry = g/ px. The value of u; is taken
as the largest of the set consisting of 0 and the various values of r. Conversely,
the value of u, is determined by examining the boundaries for which the line
proceeds from inside to outside (p > 0). A value of ry is calculated for each of
these boundaries, and the value of 15 is the minimum of the set consisting of 1 and
the calculated r values. If u; > uy, the line is completely outside the clip window
and it can be rejected. Otherwise, the endpoints of the clipped line are calculated
from the two values of parameter u.



Nicholl-Lee—Nicholl Algorithm
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FIGURE 6-16 Three possible positions for a line endpoint Py in the NLN
line-clipping algorithm.
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Ccomparisons

In general, the Liang-Barsky algorithm is more efficient than the Cohen-
Sutherland line-clipping algorithm. Each update of parameters u; and u; re-
quires only one division; and window intersections of the line are computed only
once, when the final values of 17 and u; have been computed. In contrast, the
Cohen and Sutherland algorithm can repeatedly calculate intersections along a
line path, even though the line may be completely outside the clip window. And,
each Cohen-Sutherland intersection calculation requires both a division and a
multiplication. The two-dimensional Liang-Barsky algorithm can be extended to
clip three-dimensional lines (Chapter 7). The extension of the Cohen-Sutherland

line-clipping algorithm to three dimensions is straightforward.

Compared to both the Cohen-Sutherland
and the Liang-Barsky algorithms, the Nicholl-Lee-Nicholl algorithm performs
fewer comparisons and divisions. The trade-off is that the NLN algorithm can be
applied only to two-dimensional clipping, whereas both the Liang-Barsky and
the Cohen-Sutherland methods are easily extended to three-dimensional scenes.



Nonrectangular Clip Windows
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FIGURE 6-20 A concave-

polygon clipping window (a),
with vertex list (V1, Vp, V3,
V4, Vs), is modified to the
convex polygon (Vy, V, V3,
V,) in (b). The external
segments of line P1P; are then
snipped off using this convex
clipping window. The
resulting line segment, P P,
is next processed against the
triangle (V1, Vs, Vy4) (c) to clip
off the internal line segment
P} P} to produce the final

clipped line P{P;.
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Polygon Fill-Area Clipping
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FIGURE 6-23 Processing a polygon fill area against successive clipping-window
boundaries.
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FIGURE 6-24 A polygon (a) defined with the vertex list (b)
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Sutherland—Hodgman Algorithm
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FIGURE 6-26 The four possible outputs generated by the left clipper, depending on
the position of a pair of endpoints relative to the left boundary of the clipping window.

FIGURE 6-27 Processing
a set of polygon vertices,

{1, 2, 3}, through the
boundary clippers using the
Sutherland-Hodgman
algorithm. The final set of

clipped vertices is
{]‘If 2! 2;.’ 2;(]'

Vi : v,
| |
| I
| |
| |
| |
| |
| |
| | \Y
oo 2
(3)
in — out
Output: V{

Input | Left _ Right
Edge: Clipper " Clipper
{1,2}:] (in-in) — {2}

out ——= out

Output: none

Bottom

Clipping
Window

Top

A

{2, 3}:|(in — out) — {2'}
{3, 1}:|(out —in) — {3', 1}

{2,2'}: (in—in) > {2')
{2/,3): (in —in) - {3}
(3", 1): (in — in) > {1}

{1,2}: (in - in) - {2)

Clipper

{2',3"}: (in — out) = {2}

{3',1}: (out — out) = {}
{1,2}: (out—in) — {1', 2}
{2,2'}: (in—in) = {2'}

Clipper

{2, 1'}: (in —in) — {1'}
{1",2}: (in —in) — {2}
{2,2'}): (in —in) — {2’}
{2',2"}: (in —in) — (2"}




Weiler—Atherton Algorithm

FIGURE 6-29 A concave
polygon (a), defined with the
vertex list {1, 2, 3, 4, 5, 6}, is
clipped using the Weiler-
Atherton algorithm to
Clipping | generate the two lists
Window : {1,1,1”,1"} and {4, 5,5},
| | which represent the separate
4 ! polygon fill areas shown

(a) (b) in (b).
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Window 7 \ fill area against a concave-polygon
clipping window using the

SR > Weiler-Atherton algorithm.



