Chapter 6
Two—-Dimensional Viewing

Myung—So0o Kim
Seoul National University
http://cse.snu.ac.kr/mskim
http://3map.snu.ac.kr

2D Viewing

ySCI‘CCI’I

\-_-

A Reg
Display [~ o —angle
Window \ | : T~
\ | 7]
| |
y. | |
’ b lh : Viewport
~ - - |
T~ |
\x\

FIGURE 6-9 A viewport
at coordinate position (xs, ys)
within a display window.

!

—

xSCl‘CCI‘I

2D Viewing Transformation

Clipping Window

yu"max .
Viewport

YVmax i_ _________ 1

l/\/\/\:

' [

' |

TICIIDE & A . -1 5 |

FIGURE 6-2 A clipping /ywmin — Yomin [~ “T o

window and associated | | | |
viewport, specified as

p ! p xwmin xwmax xvmin xvmax

rectangles aligned with the
coordinate axes.

World Coordinates

Construct Convert C <
World-Coordi World Transform Viewing
MC O;) ogr.mate Coordinates Coordinates to
— Mod fenec smc% to Normalized
odeling- oor. nate Viewing Frsm i
Transformations .
Coordinates
FIGURE 6-3 Two-dimensional viewing-transformation pipeline.

Viewport Coordinates

Map Normalized
Coordinates to
Device
Coordinates

Clipping Window

2
‘e e o
b y y oy .
y world world world | view FIG UdBE Et;-? A Vlewuzlg-
coordinate frame is move
Clion into coincidence with the
A IPPINg F, world frame by (a) applyin
s S~~~ Wind 1 M . y ' pplymg
Yo AN TN meow Yo “ a translation matrix T to
N4 T move the viewing origin to
el / _ the world origin, then (b)
| v N N X view applying a rotation matrix R
Xo x world T Tx, x world /‘R x world to align the axes of the two
World Coordinates ” systems.
I ' '?é[p
FIGURE 6-4 A rotated
clipping window defined in (a) (b)
viewing coordinates.
y world A%

Clipping Window

| FIGURE 6-6 A triangle

| (a), with a selected reference

! point and orientation vector,

| x world is translated and rotated to

— position (b) within a clipping
window.

Yo

|
Xg X world

(a) (b)

Normalized Viewport/Square

Clipping Window

YWax T T T : ________ 1|

} (xw, yw) |

| |

| |

| \

|

| |

| |

YWhin T - ————————————~— -

| |

I 1

XWphin XWnax

FIGURE 6-7

1 i
Normalization
Viewport
yJUII'IaX77 [77;7777|
| \
| (X0, yv) :
|
|
YPmin + e
| | |
I I I
0 ’rvmm xvmax ‘]‘

A point (xw, yw) in a world-coordinate clipping

window is mapped to viewport coordinates (xv, yv), within a unit

square, so that the relative positions of the two points in their respective

rectangles are the same.
g

Clipping Window

YWhnax T :’ - _p_p_ _g _______ 1

|

: (xw,’ yw) |

yw ..+ (N —

| |

1 1

x r‘wmin xrwmax

FIGURE 6-8

Normalization
(xnorm‘ ynorm) 1 Squarc
—— =1
| L |
~1 F
| _—
-1

YVmax T

yvmin T

Screen
Viewport

*

N

(xv,yv)

‘rvmax

A point (xw, yw) in a clipping window is mapped to a normalized

coordinate position (Xnorm, ¥norm), then to a screen-coordinate position (xv, yv) in a
viewport. Objects are clipped against the normalization square before the transformation

to viewport coordinates.

Line Clipping

Clipping Clipping
Window Window
P, / P, / P,
P
—P, —P, Py
P; P;
P?/ P;

Before Clipping After Clipping
(a) (b)

FIGURE 6-11 Clipping
straight-line segments using a
standard rectangular clipping
window.

Cohen—Sutherland Alg

Clipping
Window

(‘rcud‘ ycnd)

Clipping
Window

r

1001

0001

[[
| |
| 1000 | 1010
[[
[[
[[
0000
0010
Clipping Window
[L
[[
} 0100 } 0110
| |
[[
| |
The nine
binary region codes for
identifying the position of a
line endpoint, relative to the
clipping-window boundaries.
bit bit bit bit
4 3 2 1
Il } Il
Top Right
Bottom Left
A possible

ordering for the clipping-

window boundaries

corresponding to the bit
positions in the Cohen-
Sutherland endpoint region

code.

Liang—Barsky Algorithm

endpoints

(xOr]/0), (xendf yend)
AX = Xond — X0

AY = Yend — W0
X = Xxo+ ulx
Y= 1Y+ uAy
O<uc<l

XWmin

ywmin

A TA

U pr = g,

Xo + UAX < XWmax

]/0 + HAy = ywmax

k=1;21314

d1 = Xp — XWmin
(2 = XWmax — X0
d3 = Yo — YWmin

4 = YWmax — Yo

Liang—Barsky Algorithm

XWmin < Xp + UAX < XWmax p1 = —AX, 1 = X0 — XWnin
YWmin < Yo + UAY < YWmax p2 = Ax, (2 = XWmax — X0

ps=—AY, 43= Yo~ YWmin
U pe < g, k=1,234 ps = Ay, g4 = YWmax — Yo

Any line that is parallel to one of the clipping-window edges has px = 0 for the
value of k corresponding to that boundary, where k =1, 2, 3, and 4 correspond
to the left, right, bottom, and top boundaries, respectively. If, for that value of k,
we also find g < 0, then the line is completely outside the boundary and can
be eliminated from further consideration. If g, > 0, the line is inside the parallel
clipping border.

When pr < 0, the infinite extension of the line proceeds from the outside
to the inside of the infinite extension of this particular clipping-window edge. If
pr > 0, the line proceeds from the inside to the outside. For a nonzero value of py,
we can calculate the value of u that corresponds to the point where the infinitely
extended line intersects the extension of window edge k as

_ &
Pk

u (6-20)

Liang—Barsky Algorithm

XWmin < Xp + UAX < XWmax p1 = —AX, 1 = X0 — XWnin
YWmin < Yo + UAY < YWmax p2 = Ax, (2 = XWmax — X0
p3=—AY, 43= Yo~ YWnmin
U pe < g, k=1,234 ps = Ay, 4 = YWmax — Yo
u="1 (6-20)
Pk

For each line, we can calculate values for parameters u; and u, that define that
part of the line that lies within the clip rectangle. The value of 1 is determined by
looking at the rectangle edges for which the line proceeds from the outside to the
inside (p < 0). For these edges, we calculate ry = g/ px. The value of u; is taken
as the largest of the set consisting of 0 and the various values of r. Conversely,
the value of u, is determined by examining the boundaries for which the line
proceeds from inside to outside (p > 0). A value of ry is calculated for each of
these boundaries, and the value of 15 is the minimum of the set consisting of 1 and
the calculated r values. If u; > uy, the line is completely outside the clip window
and it can be rejected. Otherwise, the endpoints of the clipped line are calculated
from the two values of parameter u.

Nicholl-Lee—Nicholl Algorithm

P,+
Pye Py«
P, Inside Clipping Window P, in an Edge Region P, in a Corner Region
(a) (b) (c)

FIGURE 6-16 Three possible positions for a line endpoint Py in the NLN
line-clipping algorithm.

T
P«
L R P«
*
P T
0 LT r
or
B
r TR L
L L L
- Py« L LR
FIGURE 6-17 The four I B - LB
regions used in the NLN
algori‘thrr.'l whgn P, is inside (@) FIGURE6-19 The two (b)
’.[he chppmg window and Peng LB possible sets of clipping
is outside. regions used in the NLN
algorithm when Py is above
FIGURE 6-18 The four clipping regions and to the left of the clipping
window.

used in the NLN algorithm when Py is directly
to the left of the clip window.

LR

TR

Ccomparisons

In general, the Liang-Barsky algorithm is more efficient than the Cohen-
Sutherland line-clipping algorithm. Each update of parameters u; and u; re-
quires only one division; and window intersections of the line are computed only
once, when the final values of 17 and u; have been computed. In contrast, the
Cohen and Sutherland algorithm can repeatedly calculate intersections along a
line path, even though the line may be completely outside the clip window. And,
each Cohen-Sutherland intersection calculation requires both a division and a
multiplication. The two-dimensional Liang-Barsky algorithm can be extended to
clip three-dimensional lines (Chapter 7). The extension of the Cohen-Sutherland

line-clipping algorithm to three dimensions is straightforward.

Compared to both the Cohen-Sutherland
and the Liang-Barsky algorithms, the Nicholl-Lee-Nicholl algorithm performs
fewer comparisons and divisions. The trade-off is that the NLN algorithm can be
applied only to two-dimensional clipping, whereas both the Liang-Barsky and
the Cohen-Sutherland methods are easily extended to three-dimensional scenes.

Nonrectangular Clip Windows

Concave Polygon

/ Clipping Window

P|%— ‘\\ ~ \\\
\‘\ \\ 4P2
>v5 }‘
// ____--"'.‘F'-...'-‘ VZ
P -
Lo
vl
(a)
FIGURE 6-20 A concave-

polygon clipping window (a),
with vertex list (V1, Vp, V3,
V4, Vs), is modified to the
convex polygon (Vy, V, V3,
V,) in (b). The external
segments of line P1P; are then
snipped off using this convex
clipping window. The
resulting line segment, P P,
is next processed against the
triangle (V1, Vs, Vy4) (c) to clip
off the internal line segment
P} P} to produce the final

clipped line P{P;.

VE
——=7N
P \
—— \
V4 - \
Y \
\ N '
% N P?
P\ "
1 \ ‘\\ _"PQ
\ \
\ _
\ - Vz

v, - E‘lip Exterior
Line Segments

(b)

'\\
Vo~ P}

Clip Interior
Line Segment

(c)

Polygon Fill-Area Clipping

Original Clip Clip Clip Clip
Polygon Left Right Bottom Top
FIGURE 6-23 Processing a polygon fill area against successive clipping-window
boundaries.
1
Clipping Window
o : v 1"
I | T T 3"
I : Coordinate Extents :
i l of Polygon Fill Area : 3 Clip
I | L o 3
| : | Cl}ppmg
: | : Window
[AT N
I ! o o
] FIGURE 6-25 A
2 convex-polygon fill area (a),
FIGURE 6-24 A polygon (a) defined with the vertex list (b)

{1, 2, 3}, is clipped to produce
the fill-area shape shown in
(b), which is defined with the
output vertex list

{1:’, 2-’, 2-’/, 3], 3”’ 1”}-

fill area with coordinate
extents outside the right
clipping boundary.

Sutherland—Hodgman Algorithm

I I
| | Loa Ve
I | | |
| | | |
I | | |
| | | |
I | | |

Vzl | Vv |
' | | 1]
v, Vi I
(1) @)
out — in in —in
Output: V|, V, Output: V,

FIGURE 6-26 The four possible outputs generated by the left clipper, depending on
the position of a pair of endpoints relative to the left boundary of the clipping window.

FIGURE 6-27 Processing
a set of polygon vertices,

{1, 2, 3}, through the
boundary clippers using the
Sutherland-Hodgman
algorithm. The final set of

clipped vertices is
{]‘If 2! 2;.’ 2;(]'

Vi : v,
| |
| I
| |
| |
| |
| |
| |
| | \Y
oo 2
(3)
in — out
Output: V{

Input | Left _ Right
Edge: Clipper " Clipper
{1,2}:] (in-in) — {2}

out ——= out

Output: none

Bottom

Clipping
Window

Top

A

{2, 3}:|(in — out) — {2'}
{3, 1}:|(out —in) — {3', 1}

{2,2'}: (in—in) > {2')
{2/,3): (in —in) - {3}
(3", 1): (in — in) > {1}

{1,2}: (in - in) - {2)

Clipper

{2',3"}: (in — out) = {2}

{3',1}: (out — out) = {}
{1,2}: (out—in) — {1', 2}
{2,2'}: (in—in) = {2'}

Clipper

{2, 1'}: (in —in) — {1'}
{1",2}: (in —in) — {2}
{2,2'}): (in —in) — {2’}
{2',2"}: (in —in) — (2"}

Weiler—Atherton Algorithm

FIGURE 6-29 A concave
polygon (a), defined with the
vertex list {1, 2, 3, 4, 5, 6}, is
clipped using the Weiler-
Atherton algorithm to
Clipping | generate the two lists
Window : {1,1,1”,1"} and {4, 5,5},
| | which represent the separate
4 ! polygon fill areas shown

(a) (b) in (b).

Polygon
Fill Area

~. Clipped

Clipping ™~ Fill Area FIGURE 6-30 Clipping a polygon

Window 7 \ fill area against a concave-polygon
clipping window using the

SR > Weiler-Atherton algorithm.

