## Quiz #2 (CSE4190.410)

September 28, 2011 (Wednesday)

Name: \_\_\_\_\_ Dept: \_\_\_\_ ID No: \_\_\_\_

1. (5 points) What is the perspective projection of a point  $\mathbf{p}=(3,5,7)$  from the view point  $\mathbf{v}=(1,2,3)$  onto the line x+y+z+1=0?

$$\hat{p} = (3, 5, 7, 1)$$

$$\widehat{\mathbf{v}} = (1, 2, 3, 1)$$

$$\hat{\mathbf{n}} = (1, 1, 1, 1)$$

$$\widehat{\mathbf{m}} \times (\widehat{\mathbf{p}} \times \widehat{\mathbf{v}}) = \langle \widehat{\mathbf{m}}, \widehat{\mathbf{v}} \rangle \widehat{\mathbf{p}} - \langle \widehat{\mathbf{m}}, \widehat{\mathbf{p}} \rangle \widehat{\mathbf{v}}$$

$$=(5,3,1,-9)$$

$$= \left(-\frac{5}{9}, -\frac{3}{9}, -\frac{1}{9}, 1\right)$$

$$\left(-\frac{5}{9}, -\frac{3}{9}, -\frac{1}{9}\right)$$

2. (7 points) Consider two parallel planes:

$$\Pi_1: ax + by + cz + d_1 = 0,$$
  
 $\Pi_2: ax + by + cz + d_2 = 0.$ 

What is the affine transformation from  $R^3$  to  $R^1$  that sends  $\Pi_1$  to -1 and  $\Pi_2$  to 1?

$$\begin{bmatrix}
 2a & 2b & 2c & d_1 + d_2 \\
 0 & 0 & 0 & d_1 - d_2
 \end{bmatrix}
 \begin{bmatrix}
 7 \\
 4 \\
 \hline
 2ax + 2by + 2cz + d_1 + d_2
 \end{bmatrix}
 =
 \begin{bmatrix}
 2ax + 2by + 2cz + d_1 + d_2 \\
 d_1 - d_2
 \end{bmatrix}$$

Hor 
$$(x, y, z) \in T_1$$
, we have  
 $2(ax+by+cz) = -2d_1$   
 $\therefore 2(ax+by+2cz+d_1+d_2) = dz-d_1$   
Hor  $(x,y,z) \in T_2$ , we have  
 $2(ax+by+cz) = -2d_2$   
 $\therefore 2(ax+by+2cz+d_1+d_2) = d_1-d_2$ 

Hence, the above affine transformation Sends TI, and TIZ to -1 and 1, respectively. 3. (8 points) Using the wedge-product operation discussed in class, answer the following questions. What is the plane that is determined by three points (1,2,3), (3,5,7), and (2,3,5)? What is its intersection with other planes x+y+z+1=0 and x-y-z+1=0?

$$(1,2,3,1) \wedge (3,5,7,1) \wedge (2,3,5,1)$$

$$= (2,0,-1,1)$$

$$-1.2x-2+1=0$$

$$(2,0,-1,1) \wedge (1,1,1,1) \wedge (1,-1,-1,1)$$

$$=(2,-2,2,-2)$$

$$= (-1, 1, -1, 1)$$