Quiz #6 (CSE 400.001) NDecember 3, 2012 (Monday)

Name:	ID No:	

- 1. (10 points)
 - (a) (5 points) If a square matrix A has column 1 + column 2 = column 3, show that A is not invertible.
 - (b) (5 points) If a square matrix A has a row of zeros, show that A is not invertible.

(a)
$$A = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \cdots & \alpha_n \end{bmatrix}$$

Let
$$x = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
, then $Ax = a_1 + a_2 - a_3 = 0$.
But, $x \neq 0$:

: A is not mvertible

(b) Suppose A has an inverse
$$A^{-1} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}$$
.

A has a row of zeros (say, the ith row)

> The ith element of Axi should be 0.
But, it is impossible since Axi = ei.

.. A is not invertible

2. (10 points) Solve $A\mathbf{x} = \mathbf{b}$ using the triangular systems $L\mathbf{c} = \mathbf{b}$ and $U\mathbf{x} = \mathbf{c}$.

2. (10 points) Solve
$$A\mathbf{x} = \mathbf{b}$$
 using the triangular systems $L\mathbf{c} = \mathbf{b}$ and $U\mathbf{x} = \mathbf{c}$.
$$A = LU = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

What part of A^{-1} have you found with this particular **b**?

(a)
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\Rightarrow c_1 = 0, c_2 = 0, c_3 = 1$$

(b)
$$\begin{bmatrix} 2 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\Rightarrow \chi_3 = 1, \chi_2 = -3, \chi_1 = 1$$

(c)
$$b=e_3 \Rightarrow x=A^{\dagger}b=A^{\dagger}e_3$$

 $x = A^{\dagger}b=A^{\dagger}e_3$
 $x = A^{\dagger}b=A^{\dagger}e_3$