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(a) (5 points) After a mass m is attached to a spring, the spring stretches s units
and then hangs at rest in the equilibrium position as shown in Figure (A). After
the spring/mass system has been set in motion, let z(¢) denote the directed
distance of the mass beyond the equilibrium position. The restoring force of a
spring is proportional to the elongation. Determine the differential equation for
the displacement z(¢) at time ¢.

(b) (5 points) In Problem (a), determine a differential equation for the displacement
z(t) if the motion takes place in a medium that imparts a damping force on
the spring/mass system that is proportional to the instantaneous velocity of the .
mass and acts in a direction opposite to that of motion.

(c) (10 points) As illustrated in Figure (B), light rays strike a plane curve C in
such a manner that all rays L parallel to the z-axis are reflected to a single
point O. Assuming that the angle of incidence is equal to the angle of reflection,
determine a differential equation that describes the shape of the curve C. [Hint:
Note that ¢ = 26.]
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2. (10 points) Given a system of linear ODEs represented as a vector equation:
y'(t) = Ay (t) + g(t),

assume that y1(¢),- - -, yna(t) are linearly independent solutions for the corresponding
homogeneous system of equations: y'(t) = Ay (¢). For the matrix Y (¢) = [y1(¢), - - -, ya(t)],

show that
Y' (t) = AY (2).
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3. (15 points) Solve the following differential equation

Y’ — 2y + 2y = e"tanz.
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4. (15 points) Solve the following initial value problem:

v = 4y —2ys+2u(t—1), 11(0)=0,
¥y = 3y1 —yat+ult—1), 12(0)=1/2.
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5. (15 points) Given a periodic function f(t) = f(t + p), for ¢ > 0, which is piecewise
continuous and |f(t)| < Me*, for some k and M. Show that
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6. (15 points) Using the formula
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find the Laplace transformation of the following periodic function:
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~ 7. (10 points) Solve the following integro-differential equation:

t—2F(t) = /(e — eV f(t—T)dr = (_6 Ai\)*”ﬁ*}
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