Programming #4: Part I (4190.410)

Due: November 25, 2015

Given a polyline L interpolating (N + 1) points \mathbf{p}_i , $(i = 0, \dots, N)$, apply the four point principle to generate an interpolating polyline $L^{(1)}$ with (2N+1) points $\mathbf{p}_j^{(1)}$, $(j = 0, \dots, 2N+1)$:

$$\mathbf{p}_{2i}^{(1)} = \mathbf{p}_{i}, \mathbf{p}_{2i+1}^{(1)} = \frac{1}{16} \left[-\mathbf{p}_{i-1} + 9\mathbf{p}_{i} + 9\mathbf{p}_{i+1} - \mathbf{p}_{i+2} \right].$$

Repeat the subdivision step three times to generate the polyline $L^{(3)}$ with (8N + 1) points.

Generate a tube-like surface by sweeping a circle (approximated with a regular 32-gone) along the polyline $L^{(3)}$ and render the surface with an environment map.