Programming #4: Part II (4190.410)

Due: December 2, 2015

Given a polyline L interpolating (N+1) points \mathbf{p}_i , $(i=0,\cdots,N)$, apply the four point principle to generate an interpolating polyline $L^{(1)}$ with (2N+1) points $\mathbf{p}_j^{(1)}$, $(j=0,\cdots,2N+1)$:

$$\mathbf{p}_{2i}^{(1)} = \mathbf{p}_{i},$$
 $\mathbf{p}_{2i+1}^{(1)} = \frac{1}{16} \left[-\mathbf{p}_{i-1} + 9\mathbf{p}_{i} + 9\mathbf{p}_{i+1} - \mathbf{p}_{i+2} \right].$

Repeat the subdivision step three times to generate the polyline $L^{(3)}$ with (8N+1) points.

Part I: Generate a tube-like surface by sweeping a circle (approximated with a regular 32-gone) along the polyline $L^{(3)}$ and render the surface with an environment map..

Part II: Generate a smooth animation of the tube-like surface by making each point \mathbf{p}_i , $(i = 0, \dots, N)$, move along a smooth curve $\mathbf{p}_i(t)$, $(0 \le t \le 1)$, that interpolates $\mathbf{p}_{i,0}$, $\mathbf{p}_{i,1}$, and $\mathbf{p}_{i,2}$ at time t = 0, 1/2, and 1, respectively.