
Computer Graphics

(Comp 4190.410)

Midterm Exam: October 30, 2013

1. (20 points)

(a) (4 points) What are the main tasks of the display processor?

• Rasterization (Scan conversion of points, lines, polygons, characters, etc.)

• Various geometric and viewing transformations

• Interface with interactive input devices

(b) (4 points) How many times the recursive function boundaryFill4 will be called for the
following example?

• 25 times

(c) (4 points) What are the main reasons for mapping the clipping window to a normalized
viewport?

• Efficiency in supporting multiple viewports on different devices

• Simple clipping

(d) (8 points) Is it possible to extend the Cohen-Sutherland line clipping algorithm to cubic
Bézier curves which are monotone along the x- and y-axis directions? Explain why. Is it
possible to extend the NLN algorithm? Explain why.

• Yes. The Cohen-Sutherland algorithm is mainly based on the x- and y-monotoicity of
line segments. When the two end points share at least one non-zero bit in their binary
codes, the whole curve is guaranteed to be in the same region outside the clipping
window.

• No. These curves may not be monotone along arbitrary directions, whereas the regions
of the NLN algorithm are bounded by lines ax + by + c = 0 with arbitrary slope, i.e.,
a 6= 0 and b 6= 0 in general.

1



2. (20 points) Consider a trackball of radius 1 with its center located at the origin (0, 0, 0).

(a) (5 points) When we rotate the trackball by moving a point at a ∈ S2 to a different location
b ∈ S2, find the axis and angle of the 3D rotation.

• Axis: a× b/‖a× b‖
• Angle: arccos 〈a,b〉

(b) (5 points) We put a sensor to the housing of the trackball at the bottom location (0, 0,−1)
where the sensor can detect a 2D surface velocity of the rotating trackball. Given an angular
velocity ω = (ωx, ωy, ωz), what is the velocity the sensor at (0, 0,−1) can detect?

• ω × (0, 0,−1) = (−ωy,−ωx, 0)

(c) (10 points) Given two sensors located at pi = (xi, yi, zi) ∈ S2, i = 1, 2, each detects
a surface velocity p′i = (x′i, y

′
i, z
′
i) which is orthogonal to pi, i.e., 〈pi,p

′
i〉 = 0. Using the

relation p′i = ω×pi, formulate a matrix equation Aω = b, where b = (x′1, y
′
1, z
′
1, x
′
2, y
′
2, z
′
2)

T ,
and discuss how to approximate the angular velocity ω from the overconstrained equation.

0 z1 −y1
−z1 0 x1
y1 −x1 0
0 z2 −y2
−z2 0 x2
y2 −x2 0


 ωx

ωy

ωz

 =



x′1
y′1
z′1
x′2
y′2
z′2


3. (20 points) Consider a perspective projection of 3D points xi (from v̂) to 2D points x′i (on n̂):

x̂′i = 〈n̂, v̂〉 x̂i − v̂ 〈n̂, x̂i〉 = P x̂i, for i = 1, 2.

(a) (10 points) Explain why the projection x′m of the midpoint xm = (x1 + x2)/2 is not the
same as the midpoint (x′1 + x′2)/2 of the projections x′1 and x′2 onto the plane n̂.

• Let x̂1 = [x1, 1]t and x̂2 = [x2, 1]t, then
x̂′1 = P x̂1 = [w′1x

′
1, w

′
1]

t and x̂′2 = P x̂2 = [w′2x
′
2, w

′
2]

t, where w′1 6= w′2 in general.
Let x̂m = [xm, 1]t = [(x1 + x2)/2, 1]t = [x1 + x2, 2]t, then
x̂′m = P x̂m = P [x1 + x2, 2]t = P x̂1 + P x̂2 = x̂′1 + x̂′2 = [w′1x

′
1 + w′2x

′
2, w

′
1 + w′2]

t.
Consequently, x′m = (w′1x

′
1 + w′2x

′
2)/(w

′
1 + w′2) 6= (x′1 + x′2)/2 if w′1 6= w′2 .

(b) (10 points) Let L(t) = (1 − t)x′1 + tx′2, 0 ≤ t ≤ 1, denote the line segment connecting the
two projection points x′1 and x′2. What is the preimage of L(t) (on the line segment x1x2

connecting the two 3D points x1 and x2) for the above perspective projection?

• The mapping from the given line segment x1x2 to the projected line segment x′1x
′
2 can

be presented as a perspective transformation[
w′2 0

w′2 − w′1 w′1

]
,

which has an inverse mapping [
w′1 0

w′1 − w′2 w′2

]
Thus, the preimage of L(t) is given as a point (1−α(t))x1 +α(t)x2 on the line segment
x1x2, where

α(t) =
tw′1

t(w′1 − w′2) + w′2
.

2



4. (20 points)

(a) (10 points) Design a recursive bottom-up algorithm for constructing an LSS tree for an open
polygonal chain C that connects a sequence of points pi = (xi, yi, zi), for i = 0, · · · , 2k, for
some k > 0. To make life easy, you may split each subchain in the middle into two pieces
with the same number of edges.

• At the leaf level, the LSS is a line segment connecting two adjacent points pi−1 and pi,
for i = 1, · · · , 2k. At this leaf level, there is no approximation error and the thickness
of the corresponding LSS volume is zero: ε = 0.

• At an intermediate level, assume that the left-child LSS is the sweeping of a sphere of
radius εi along the line segment p(i−1)∗2hpi∗2h and the right -child LSS is the sweeping

of a sphere of radius ε(i+1) along the line segment pi∗2hp(i+1)∗2h , for i = 1, · · · , 2(k−h).

• The parent LSS is the sweeping of a sphere of radius di + max(εi, ε(i+1)) along a line
segment p(i−1)∗2hp(i+1)∗2h , where di is the minimum distance between the point pi∗2h

and the line segment p(i−1)∗2hp(i+1)∗2h .

• The minimum distance di can be computed using the inner product between two vectors
a = pi∗2h − p(i−1)∗2h and b = p(i+1)∗2h − p(i−1)∗2h . (i) If 〈a,b〉 < 0, di = ‖a‖, (ii) else if
〈a,b〉 > ‖a‖‖b‖, di = ‖p(i+1)∗2h − pi∗2h‖, and (iii) otherwise, di = ‖a× b‖/‖b‖.

(b) (10 points) Design a recursive view frustum culling algorithm for the polygonal chain C
using the LSS tree constructed in (a).

• Given an LSS node with two end points pk = (xk, yk, zk), for k = 1, 2, and the view
frustum bounded by six planes Li : aix+ biy+ ciz+ di = 0, for i = 1, · · · , 6, with a unit
outward normal direction (ai, bi, ci) ∈ S2, we test the signed distance of the two points
pk against each bounding plane Li.

• For a plane Li, if the two signed distances are both larger than the thickness ε of the
LSS bounding volume, i.e., aixk + biyk + cizk + di− ε > 0, for k = 1, 2, the LSS volume
is completely outside the view frustum and should be culled away.

• Else if the two signed distances are both smaller than −ε for all the six planes Li, i.e.,
aixk + biyk + cizk + di + ε < 0, for all k = 1, 2 and all i = 1, · · · , 6, the LSS volume is
completely contained in the view frustum.

• Otherwise, we go to the next lower level of the LSS tree hierarchy and repeat the same
procedure recursively.

• Finally, at the end of the recursion, we will end up with the leaf level of the LSS tree,
where we clip the line segment at the leaf node against the view frustum.

5. (20 points) Fill in the blanks in the following OpenGL program segments taken from HW #3-3.

3


