Quiz #2 (CSE4190.410)

September 25, 2013 (Wednesday)

1. (10 points) Consider three parallel planes:

$$\Pi_i$$
: $ax + by + cz + d_i = 0$, $(i = 0, 1, 2)$.

- (a) (1 points) What is the affine transformation from R^3 to R^1 that sends Π_0 to d_0 , Π_1 to d_1 , and Π_2 to d_2 ?
- (b) (1 points) What is the 1D translation that sends d_0 to 0, d_1 to $\bar{d}_1 = d_1 d_0$, and d_2 to $\bar{d}_2 = d_2 d_0$?
- (c) (7 points) What is the 1D perspective transformation that sends 0 to 0, \bar{d}_1 to 1, and \bar{d}_2 to 2?
- (d) (1 point) What is the composite perspective transformation from R^3 to R^1 that sends Π_0 to 0, Π_1 to 1, and Π_2 to 2?

(c)
$$\begin{bmatrix} A B \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix} \Rightarrow \begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$
 and $B = 0$ (f)

$$\begin{bmatrix} A & O \end{bmatrix} \begin{bmatrix} \overline{a} \\ \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \Rightarrow \frac{A \overline{a}}{C \overline{a} + 1} = 1 : A = C + \frac{1}{\overline{a}}$$

$$\begin{bmatrix} A \ O \end{bmatrix} \begin{bmatrix} \overline{dz} \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \Rightarrow \frac{A\overline{dz}}{C\overline{dz}+1} = 2 : A = 2C + \frac{2}{dz}$$

$$C + \frac{1}{a} = 2C + \frac{2}{a} \Rightarrow C = \frac{1}{a} - \frac{2}{a} = \frac{\overline{a_2} - 2\overline{a_1}}{\overline{a_1}\overline{a_2}}$$

$$A = \frac{2}{a} - \frac{2}{a} = \frac{2(\overline{a_2} - \overline{a_1})}{\overline{a_1}\overline{a_2}}$$

(d)
$$[2(\bar{d}_2 - \bar{d}_1) \ 0] [1 - d_0] [a b c 0] [3 - 2\bar{d}_1 \ \bar{d}_2] [0 \ 1] [0 \ 0 \ 0 - 1]$$