Engineering Mathematics I
(Comp 400.001) -

Midterm Exam I: April 8, 2003

1. (15 points) In each of the following problems, formulate a differential equation that
models the given problem. You don’t need to solve the differential equations thus
formulated.

(a)

(5 points) Suppose a student carrying a flu virus returns to an isolated college
campus of 1000 students. Determine a differential equation governing the num-
ber of people z(t) who have contracted the flu if the rate at which the disease
spreads is proportional to the number of interactions between the number of stu-
dents with the flu and the number of students who have not vet been exposed
to it.

(5 points) For high-speed motion through the air - such as the skydiver falling
before the parachute is opened - air resistance is closer to a power of the in-
stantaneous velocity. Determine a differential equation for the velocity v(t) of
a falling body of mass m if air resistance is proportional to the square of the
instantaneous velocity.

(5 points) In the theory of learning, the rate at which a subject is memorized is
assumed to be proportional to the amount that is left to be memorized. Suppose
M denotes the total amount of a subject to be memorized and A(t) is the
amount memorized at time ¢. Moreover, assume that the rate at which material -
is forgotten is proportional to the amount memorized in time t. Determine a
differential equation for the amount A(t).
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2. (10 points) Find an explicit solution for the following initial value problem
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3. (15 points) Solve the following differential equation

y" =2y + 2y = cFtanz.
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4. (20 points) Solve the following initial value problem

v ' +5y +6y =u(t—1)+d(t—2), v(0)=0, '
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5. (10 points) Solve the following integral equation

()=1+ [ yir)ar.
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6. (15 points) Solve the following initial value problem

y — y=te'sint, y(0)=0.
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7. (15 points) Find the inverse Laplace transform of the following function
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