Chap 3 NURBS
123.1 Conics

A number of equivalent ways exist to define a conic section; for our
purposes the following one is very useful: A conic section in IE* is
the perspective projection of a parabola in IE.

When it comes to the formulation of conics as rational curves, one
typically chooses the center of the projection to be the origin 0 of a
3D Cartesian coordinate system. The plane into which one projects
is taken to be the plane z = 1. Since we will study planar curves in
this section, we may think of this plane as a copy of JE2. Our special
projection is characterized by
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Note that a point x is the projection of a whole family of points:
Every point of the form fx projects onto the same 2D point x. The 3D
point x is called the homogeneous form or homogeneous coordinates
of x. Sketch 102 illustrates.

A conic c(t) is given by weights 2o, 21,22 € IR and control points
bo, by, by € IE? such that
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i.e., c may be expressed as a parametric rational quadratic curve.
Thus the conic control polygon is the projection of the control poly-
gon with homogenoues vertices
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which is the control polygon of the 3D parabola that we projected
onto the conic ¢. The form (13.1) is called the rational quadratic
form of a conic section.




13.2 Reparametrization and Classification

It is possible to change the weights of a conic without changing its
shape. If the initial weights are zp, z1, 22, then the set of weights
20, C21, 229 generates the same conic for any ¢ # 0. This may be used
to bring a conic into standard form: Assuming zy = 1 without loss of
generality, we set ¢ = 1/ \/72.1, Now the new weights are 1, czq, 1.

Changing the weights in this fashion does not change the curve’s
geometry, but it does change how it is traversed. Hence, the term
reparametrization is used to describe this process.

Once a conic is in standard form, it is easy to decide which type
it is:

e a hyperbola if z; > 1;
e a parabola if z; = 1;

e an ellipse if z; < 1.

Figure 13.2 shows some examples. The “flat” segments are ellipses,
while the “curved” ones are hyperbolas. The intermediate case, the
parabola, is plotted in gray.

An interesting effect occurs if we set ¢ = —1. Then, the weights
20, 21, 22 change to new weights zg, —2z1, 2zo. While the first set of
weights (assuming all z; are positive) generates a curve inside the
control polygon, the second set generates the remaining “half” of the
curve, called the complementary segment. This comes in handy if we
want to plot a whole conic: Simply plot a conic arc for each set of
weights. This is done in Figure 13.3.

Figure 13.2.
As the weight z; changes form 0.1 to 0.9, three types of conics are produced.

Figure 13.3.
An arc of a conic, grey, and the complementary segment, black.



13.4 The Circle

Of all conics, the circular arc is the one most widely used. Here
we will represent it as a rational quadratic Bézier curve. Its control
polygon must satisfy a special condition: It has to form an isosceles
triangle, due to the circle’s symmetry properties. Referring to Figure
13.4, and assuming standard form, we need to set

21 = COSs @,

with a = Z(bg,bo,bl).

A whole circle may be represented in many ways by piecewise ra-
tional quadratics. One example is to represent one quarter with the
control polygon, and then use the complementary segment to write
the remaining part. It is probably more convenient—retaining the
convex hull property for positive weights—to dissect the full circle
into four parts, as shown in Figure 13.5.

Although we can write an arc of a circle in rational quadratic form,
one should not overlook that we then sacrifice one nice property of
the familiar sin/cos parametrization: In the rational quadratic form,
the parameter ¢ does not traverse the circle with unit speed. Thus,

if an arc of a rational quadratic is to be split into a certain number
of segments, each subtending the same angle, numerical techniques
must be invoked. In the sin/cos parametrization, by contrast, equal
parameter increments ensure equal subtended angles.
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Figure 13.4.
The circle: the geometry of the control polygon.

a

The full circle: It may be represented by four rational quadratics.
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13.5 Rational Bézier Curves

So far, we have obtained a conic section in IE? as the projection of
a parabola (a quadratic) in IE®. Conic sections may be expressed as
rational quadratic Bézier curves, and their generalization to higher de-
gree rational curves is quite straightforward: A rational Bézier curve
of degree n in JE® is the projection of an nt" degree Bézier curve in
JE* into the hyperplane w = 1. Here, we denote 4D points by four
coordinates and their 3D projections by three coordinates:
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We may view this 4D hyperplane as a copy of IE3; we assume that
a point x in JE* is given by four coordinates. Proceeding in exactly
the same way as we did for conics, we can show that an nth degree
rational Bézier curve is given by

wobeBF(t) + - - - + wa b B (t)
woBZ(t) + -+ - + wp BR(2) .

x(t) = x(t),b; € E3.  (13.4)

The w; are again called weights; the b; form the control polygon.
It is the projection of the 4D control polygon by,...,b,. This 4D
control polygon defines a 4D polynomial curve-——the homogeneous
form of the curve. It is given by

x(t) = by By (t) + - + b, Br (D).

In order to evaluate a rational Bézier curve, we apply the de Castel-
jau algorithm to this homogeneous form and project the resulting
point into 3D.

If all weights are one, we obtain the standard nonrational Bézier
curve; in that case, the denominator is identically equal to one. If
some w; are negative, singularities may occur; we will therefore only
deal with nonnegative w;. Rational Bézier curves enjoy all the prop-
erties that their nonrational counterparts possess; for example, they
are affinely invariant. If all w; are nonnegative, we have the convex
hull property.?

The influence of the weights is illustrated in Figure 13.6. The “top”

curve corresponds to we = 10; the “bottom” one corresponds to wy =
0.1.




EXAMPLE 13.3

We will evaluate the following Bézier curve t = 0.5. Take the control
points from Example 3.3; They are

AR

However, make their weights 1,2,1,1. This gives the homogeneous
control points

=1 0 0 1
ol,l 21, -11,]0
I 2 1 1

Applying the de Casteljau algorithm to the homogeneous control
points gives

0.0
x(0.5) = | 0.375
1.375

The corresponding 2D point is found after division by the third coor-

dinate: -
%(08)= [ 0.2727 } '

Rational Bézier curves enjoy a property which is not shared by their
nonrational brethren: This is projective invariance. A projective map
maps homogeneous coordinates x to new homogeneous coordinates X.
It takes the form of a linear map

x=Ax
with A being a 4 x 4 matrix. Such a map will change the weights of a
curve. For the simple example of rational quadratic conics, projective
maps are capable of mapping an ellipse to a hyperbolal

The curvature and torsion formulas from Section 8.2 change just
slightly for rational curves. At t = 0 we have

n — 1 wowsy area[bg, by, ba]

k(0) = 2
( ) n w1 Hbl = b()”3
and
7(0) = 3 n — 2 wows volume[bg, by, ba, bs]
- 2 n Wi W2 area[b()’bl,bg]?



13.6 Rational B-Spline Curves

Rational B-spline curves, known as NURBS, short for NonUniform
Rational B-spline curveS have become a standard in the CAD/CAM
industry.® They are defined in a not too surprising fashion:

u) _ ’w()doNé’L('uv)—{'—...—Jr’UJDhldD_lNgAl(u) (13 5)
woNZ(u) + ... +wp_1 Np_i(u) '

All properties from the rational Bézier form carry over, such as convex
hull (for nonnegative weights), or affine and projective invariance.

Derivatives may easily be computed using the equations of Section
13.3.

Designing with cubic NURB curves is not very different from de-
signing with their nonrational counterparts. But we now have the
added freedom of being able to change weights. A change of only one
weight affects a rational B-spline curve only locally.

13.7 Rational Bézier and B-Spline Surfaces

We can generalize Bézier and B-spline surfaces to their rational coun-
terparts in much the same way as we did for the curve cases. In other
words, we define a rational Bézier or B-spline surface as the projection
of a 4D tensor product Bézier or B-spline surface. Thus, the rational
Bézier patch takes the form

MTB,N

x(uw,v) = TN

(13.6)
The notation is that of (6.8), but now the matrix B, has elements
w; ;b;; and the matrix W has elements w; ;. These w; ; are again
called weights and influence the shape of the surface in much the same
way as we observed for the curve case.

A rational B-spline surface is similarly written as

MT™D,N

sv) = TN

(13.7)

where the matrices M and N contain the B-spline basis functions in
u and v.



13.8 Surfaces of Revolution

One advantage of rational B-spline surfaces is that they allow the
exact representation of surfaces of revolution. A surface of revolution
is obtained by rotating or sweeping a curve—the generatriz—around
an axis. Our generatrix will be of the form

This planar curve in the (z,z)-plane would be a (rational) Bézier
curve or a B-spline curve in most practical cases. For our axis of
revolution, we will take the z-axis. In Figure 13.8, the z-axis comes
out of the center of the half-torus. The (z, z)-plane is nearly aligned
with the view. .

In this context, a surface of revolution is given by

r(v) cosu
x(u,v) = | r(v)sinu

z(v)

For fixed v, an isoparametric line v = const traces out a circle of
radius r(v), called a meridian. Since a circle may be exactly rep-
resented by rational quadratic arcs, we may find an exact rational
representation of a surface of revolution given that 7(v) and z(v) are
in rational form.

Let

Cc;, = 0
24

be the control points of the generatrix and let w; be their weights.*
Then, the surface of revolution is broken down into four symmetric
pieces which are rational quadratic in the parameter u. Each piece
corresponds to one quadrant of the (z,y)-plane.

Over the first quadrant, we have a surface with three columns of
control points and associated weights. They are given by

z; i 0
0 , T ) T
Zj 2 24

Their weights are w;, %wi, w;. The remaining three surface segments
are now simply obtained by reflecting this one appropriately.



