Bounding Circular Arcs for a Dynamic BVH of **Deformable** Planar Curves

Jaewook Lee (Seoul Nat'l Univ, Korea) Yong-Joon Kim (Siemens PLM, USA) Myung-Soo Kim (Seoul Nat'l Univ) Gershon Elber (Technion, Israel) Spiral

Fig. 1. Bounding circular arcs.

Fat Arc (Sederberg et al. CAGD'89)

Bounding Circular Arcs (Meek and Walton CAD'93, JCAM'95)

Fig. 1. Bounding circular arcs.

The spiral segment is said to satisfy the *enclosing condition* if the curvature of the spiral at A is less than or equal to the curvature of C_A and the curvature of the spiral at B is greater than or equal to the curvature of C_B (see Fig. 1).

Theorem 5. If a convex spiral segment of positive increasing curvature satisfies the enclosing condition, then the bounding circular arcs enclose a crescent-shaped region that includes the entire spiral segment.

Spiral Fat Arc

Barton and Elber (GMOD2011)

Bounding Circular Arcs

Comparison of Three Bounding Volumes

Fig. 1 (a) Bounding circular arcs, (b) spiral fat arcs, (c) bilens, and (d) an overlap of three bounding regions.

Cubic Convergence

Existence and Uniqueness

Efficient Construction (BCA)

