Computer Graphics (Comp 4190.410) Midterm Exam: October 27, 2014

1. (20 points)

(a) (10 points) In the Bresenham Algorithm for line drawing, show that the initial value

$$p_0 = 2\Delta y - \Delta x$$

$$p_{k} = \Delta x (d_{lower} - d_{upper}) = \Delta x (2mx_{k} - 2y_{k} + 2m + 2b - 1)$$

$$p_{0} = \Delta x [2mx_{0} - 2y_{0} + 2m + 2b - 1] = \Delta x [2mx_{0} - 2(mx_{0} + b) + 2m + 2b - 1]$$

$$= \Delta x [2m - 1] = 2\Delta y - \Delta x$$

- (b) (5 points) The Liang-Barsky line clipping algorithm can be extended to clipping cubic Bézier curves which are monotone along the x- and y-axis directions. Explain why. The Liang-Barsky algorithm can also be extended to the curve clipping against an arbitrary convex polygonal window under some conditions. What are these conditions?
 - The Liang-Barsky algorithm is mainly based on the fact that the line segment (to be clipped) may intersect each boundary (infinite) line at most once. This property also holds for the x and y-monotone Bézier curve segments.
 - As long as the Bézier curve segment satisfies the property of at most one intersection against each boundary line, the extension works.
- (c) (5 points) The Sutherland-Hodgman Algorithm assumes that the result of clipping a connected polygon region (against a half-plane) is again a connected region. But, this assumption fails in general. Nevertheless, there are some special cases where it works. What are these special cases.
 - Convex polygonal region
 - Star-shaped polygon when the center is contained in the window.
- 2. (15 points) Consider a trackball of radius 1 with its center located at the origin (0, 0, 0).
 - (a) (7 points) When we try to move a point $\mathbf{p} \in S^2$ to a tangential direction \mathbf{d} (i.e., $\langle \mathbf{p}, \mathbf{d} \rangle = 0$), find the 3D rotation (i.e., axis and angle) that is the most reasonable to the user input \mathbf{d} .
 - Axis: $(\mathbf{p} \times \mathbf{d}) / \|\mathbf{p} \times \mathbf{d}\|$
 - Angle: $\|\mathbf{d}\|$
 - (b) (8 points) When the input direction \mathbf{d} is not tangential to the trackball (i.e., the vector \mathbf{d} is not orthogonal to the position vector \mathbf{p}), we need to project the vector \mathbf{d} to a tangential vector to S^2 at \mathbf{p} . What is the most reasonable 3D rotation (i.e., axis and angle) corresponding to the user input direction \mathbf{d} ?
 - Axis: $(\mathbf{p} \times \mathbf{d}) / \|\mathbf{p} \times \mathbf{d}\|$
 - Angle: $\|\mathbf{p} \times \mathbf{d}\|$

3. (25 points) Consider a perspective projection of 3D points \mathbf{x}_i (from $\hat{\mathbf{v}}$) to 2D points \mathbf{x}'_i (on $\hat{\mathbf{n}}$):

$$\hat{\mathbf{x}}_{i}^{\prime} = \langle \hat{\mathbf{n}}, \hat{\mathbf{v}} \rangle \, \hat{\mathbf{x}}_{i} - \hat{\mathbf{v}} \, \langle \hat{\mathbf{n}}, \hat{\mathbf{x}}_{i} \rangle = P \hat{\mathbf{x}}_{i}, \quad \text{for i} = 1, 2, 3.$$

- (a) (10 points) The projection \mathbf{x}'_c of the center point $\mathbf{x}_c = (\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3)/3$ is not the same as the center point $(\mathbf{x}'_1 + \mathbf{x}'_2 + \mathbf{x}'_3)/3$ of the three projections \mathbf{x}'_1 , \mathbf{x}'_2 , and \mathbf{x}'_3 onto the plane $\hat{\mathbf{n}}$. Where is the projection \mathbf{x}'_c located on the projection plane $\hat{\mathbf{n}}$?
 - Let $\hat{\mathbf{x}}_1 = [\mathbf{x}_1, 1]^t$, $\hat{\mathbf{x}}_2 = [\mathbf{x}_2, 1]^t$, and $\hat{\mathbf{x}}_3 = [\mathbf{x}_3, 1]^t$, then $\hat{\mathbf{x}}'_1 = P\hat{\mathbf{x}}_1 = [w'_1\mathbf{x}'_1, w'_1]^t$, $\hat{\mathbf{x}}'_2 = P\hat{\mathbf{x}}_2 = [w'_2\mathbf{x}'_2, w'_2]^t$, and $\hat{\mathbf{x}}'_3 = P\hat{\mathbf{x}}_3 = [w'_3\mathbf{x}'_3, w'_3]^t$, where $w'_i \neq w'_j$ $(i \neq j)$ in general. Let $\hat{\mathbf{x}}_m = [\mathbf{x}_m, 1]^t = [(\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3)/3, 1]^t = [\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3, 3]^t$, then $\hat{\mathbf{x}}'_m = P\hat{\mathbf{x}}_m = P[\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3, 3]^t = P\hat{\mathbf{x}}_1 + P\hat{\mathbf{x}}_2 + P\hat{\mathbf{x}}_3 = \hat{\mathbf{x}}'_1 + \hat{\mathbf{x}}'_2 + \hat{\mathbf{x}}'_3$ $= [w'_1\mathbf{x}'_1 + w'_2\mathbf{x}'_2 + w'_3\mathbf{x}'_3, w'_1 + w'_2 + w'_3]^t$. Consequently, $\mathbf{x}'_m = (w'_1\mathbf{x}'_1 + w'_2\mathbf{x}'_2 + w'_3\mathbf{x}'_3)/(w'_1 + w'_2 + w'_3)$.
- (b) (15 points) Where is the preimage of the center point $(\mathbf{x}'_1 + \mathbf{x}'_2 + \mathbf{x}'_3)/3$ that is located on the triangle $\Delta \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3$ determined by the given three points $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$?
 - The mapping from the given triangle $\Delta \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3$ to the projected triangle $\Delta \mathbf{x}'_1 \mathbf{x}'_2 \mathbf{x}'_3$ can be represented as a perspective transformation

$$\begin{bmatrix} w_2' & 0 & 0 \\ 0 & w_3' & 0 \\ w_2' - w_1' & w_3' - w_1' & w_1' \end{bmatrix}$$

which has an inverse mapping

$$\left[\begin{array}{ccc} w_1'w_3' & 0 & 0\\ 0 & w_1'w_2' & 0\\ w_1'w_3' - w_2'w_3' & w_1'w_2' - w_2'w_3' & w_2'w_3' \end{array}\right]$$

Thus, the preimage of L(s,t) is given as a point $(1 - \alpha(s,t) - \beta(s,t))\mathbf{x}_1 + \alpha(s,t)\mathbf{x}_2 + \beta(s,t)\mathbf{x}_3$ on the triangle $\Delta \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3$, where

$$\alpha(s,t) = \frac{sw_1'w_3'}{sw_1'w_3' + tw_1'w_2' + (1-s-t)w_2'w_3'}, \beta(s,t) = \frac{tw_1'w_2'}{sw_1'w_3' + tw_1'w_2' + (1-s-t)w_2'w_3'}$$

- 4. (20 points)
 - (a) (10 points) Design a recursive bottom-up algorithm for constructing an OBB tree for an open polygonal chain C that connects a sequence of points $\mathbf{p}_i = (x_i, y_i)$, for $i = 0, \dots, 2^{10}$.
 - At the leaf level, the OBB is a line segment connecting two adjacent points \mathbf{p}_{i-1} and \mathbf{p}_i , for $i = 1, \dots, 2^{10}$. At this leaf level, there is no approximation error and the thickness of the corresponding OBB volume is zero.
 - At an intermediate level, assume that the left-child OBB is along the direction of the line segment $\overline{\mathbf{p}_{(i-1)*2^h}\mathbf{p}_{i*2^h}}$ and the right-child OBB is along the direction of the line segment $\overline{\mathbf{p}_{i*2^h}\mathbf{p}_{(i+1)*2^h}}$, for $i = 1, \dots, 2^{(k-h)}$.
 - The parent OBB is along the direction of the line segment $\overline{\mathbf{p}_{(i-1)*2^{h}}\mathbf{p}_{(i+1)*2^{h}}}$, and the minimum bounding box containing the eight cornet points of the left and right children OBBs.
 - (b) (5 points) Discuss the relative advantages and disadvantages of the bottom-up OBB-tree construction against the top-down approach you have taken for Programming #3-1.
 - More efficient than the top-down construction.
 - But not as tight as the OBBs generated by the top-down approach.
 - (c) (5 points) For an AABB-tree construction for the polygonal chain C, do the two approaches (i.e, top-down and bottom-up approaches) generate different AABB trees? Why?
 - The two approaches generate the same AABBs.
 - The minimum AABB containing two children AABBs is in fact the minimum AABB for the corresponding subchain.

5. (20 points) Fill in the blanks in the following OpenGL program segments

