Computer Graphics

(Comp 4190.410)

Midterm Exam: October 27, 2014

1. (20 points)
(a) (10 points) In the Bresenham Algorithm for line drawing, show that the initial value

$$
\begin{aligned}
& p_{0}=2 \Delta y-\Delta x \\
p_{k} & =\Delta x\left(d_{\text {lower }}-d_{\text {upper }}\right)=\Delta x\left(2 m x_{k}-2 y_{k}+2 m+2 b-1\right) \\
p_{0} & =\Delta x\left[2 m x_{0}-2 y_{0}+2 m+2 b-1\right]=\Delta x\left[2 m x_{0}-2\left(m x_{0}+b\right)+2 m+2 b-1\right] \\
& =\Delta x[2 m-1]=2 \Delta y-\Delta x
\end{aligned}
$$

(b) (5 points) The Liang-Barsky line clipping algorithm can be extended to clipping cubic Bézier curves which are monotone along the x - and y-axis directions. Explain why. The Liang-Barsky algorithm can also be extended to the curve clipping against an arbitrary convex polygonal window under some conditions. What are these conditions?

- The Liang-Barsky algorithm is mainly based on the fact that the line segment (to be clipped) may intersect each boundary (infinite) line at most once. This property also holds for the x and y-monotone Bézier curve segments.
- As long as the Bézier curve segment satisfies the property of at most one intersection against each boundary line, the extension works.
(c) (5 points) The Sutherland-Hodgman Algorithm assumes that the result of clipping a connected polygon region (against a half-plane) is again a connected region. But, this assumption fails in general. Nevertheless, there are some special cases where it works. What are these special cases.
- Convex polygonal region
- Star-shaped polygon when the center is contained in the window.

2. (15 points) Consider a trackball of radius 1 with its center located at the origin ($0,0,0$).
(a) (7 points) When we try to move a point $\mathbf{p} \in S^{2}$ to a tangential direction \mathbf{d} (i.e., $\langle\mathbf{p}, \mathbf{d}\rangle=0$), find the 3D rotation (i.e., axis and angle) that is the most reasonable to the user input d.

- Axis: $(\mathbf{p} \times \mathbf{d}) /\|\mathbf{p} \times \mathbf{d}\|$
- Angle: $\|\mathbf{d}\|$
(b) (8 points) When the input direction \mathbf{d} is not tangential to the trackball (i.e., the vector \mathbf{d} is not orthogonal to the position vector \mathbf{p}), we need to project the vector \mathbf{d} to a tangential vector to S^{2} at \mathbf{p}. What is the most reasonble 3D rotation (i.e., axis and angle) corresponding to the user input direction \mathbf{d} ?
- Axis: $(\mathbf{p} \times \mathbf{d}) /\|\mathbf{p} \times \mathbf{d}\|$
- Angle: $\|\mathbf{p} \times \mathbf{d}\|$

3. (25 points) Consider a perspective projection of 3 D points \mathbf{x}_{i} (from $\hat{\mathbf{v}}$) to 2 D points \mathbf{x}_{i}^{\prime} (on $\hat{\mathbf{n}}$):

$$
\hat{\mathbf{x}}_{i}^{\prime}=\langle\hat{\mathbf{n}}, \hat{\mathbf{v}}\rangle \hat{\mathbf{x}}_{i}-\hat{\mathbf{v}}\left\langle\hat{\mathbf{n}}, \hat{\mathbf{x}}_{i}\right\rangle=P \hat{\mathbf{x}}_{i}, \quad \text { for } \mathrm{i}=1,2,3
$$

(a) (10 points) The projection \mathbf{x}_{c}^{\prime} of the center point $\mathbf{x}_{c}=\left(\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{x}_{3}\right) / 3$ is not the same as the center point $\left(\mathbf{x}_{1}^{\prime}+\mathbf{x}_{2}^{\prime}+\mathbf{x}_{3}^{\prime}\right) / 3$ of the three projections $\mathbf{x}_{1}^{\prime}, \mathbf{x}_{2}^{\prime}$, and \mathbf{x}_{3}^{\prime} onto the plane $\hat{\mathbf{n}}$. Where is the projection \mathbf{x}_{c}^{\prime} located on the projection plane $\hat{\mathbf{n}}$?

- Let $\hat{\mathbf{x}}_{1}=\left[\mathbf{x}_{1}, 1\right]^{t}, \hat{\mathbf{x}}_{2}=\left[\mathbf{x}_{2}, 1\right]^{t}$, and $\hat{\mathbf{x}}_{3}=\left[\mathbf{x}_{3}, 1\right]^{t}$, then
$\hat{\mathbf{x}}_{1}^{\prime}=P \hat{\mathbf{x}}_{1}=\left[w_{1}^{\prime} \mathbf{x}_{1}^{\prime}, w_{1}^{\prime}\right]^{t}, \hat{\mathbf{x}}_{2}^{\prime}=P \hat{\mathbf{x}}_{2}=\left[w_{2}^{\prime} \mathbf{x}_{2}^{\prime}, w_{2}^{\prime}\right]^{t}$, and $\hat{\mathbf{x}}_{3}^{\prime}=P \hat{\mathbf{x}}_{3}=\left[w_{3}^{\prime} \mathbf{x}_{3}^{\prime}, w_{3}^{\prime}\right]^{t}$,
where $w_{i}^{\prime} \neq w_{j}^{\prime}(i \neq j)$ in general.
Let $\hat{\mathbf{x}}_{m}=\left[\mathbf{x}_{m}, 1\right]^{t}=\left[\left(\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{x}_{3}\right) / 3,1\right]^{t}=\left[\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{x}_{3}, 3\right]^{t}$, then
$\hat{\mathbf{x}}_{m}^{\prime}=P \hat{\mathbf{x}}_{m}=P\left[\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{x}_{3}, 3\right]^{t}=P \hat{\mathbf{x}}_{1}+P \hat{\mathbf{x}}_{2}+P \hat{\mathbf{x}}_{3}=\hat{\mathbf{x}}_{1}^{\prime}+\hat{\mathbf{x}}_{2}^{\prime}+\hat{\mathbf{x}}_{3}^{\prime}$
$=\left[w_{1}^{\prime} \mathbf{x}_{1}^{\prime}+w_{2}^{\prime} \mathbf{x}_{2}^{\prime}+w_{3}^{\prime} \mathbf{x}_{3}^{\prime}, w_{1}^{\prime}+w_{2}^{\prime}+w_{3}^{\prime}\right]^{t}$.
Consequently, $\mathbf{x}_{m}^{\prime}=\left(w_{1}^{\prime} \mathbf{x}_{1}^{\prime}+w_{2}^{\prime} \mathbf{x}_{2}^{\prime}+w_{3}^{\prime} \mathbf{x}_{3}^{\prime}\right) /\left(w_{1}^{\prime}+w_{2}^{\prime}+w_{3}^{\prime}\right)$.
(b) (15 points) Where is the preimage of the center point $\left(\mathrm{x}_{1}^{\prime}+\mathrm{x}_{2}^{\prime}+\mathrm{x}_{3}^{\prime}\right) / 3$ that is located on the triangle $\Delta \mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3}$ determined by the given three points $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$?
- The mapping from the given triangle $\Delta \mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3}$ to the projected triangle $\Delta \mathbf{x}_{1}^{\prime} \mathbf{x}_{2}^{\prime} \mathbf{x}_{3}^{\prime}$ can be represented as a perspective transformation

$$
\left[\begin{array}{ccc}
w_{2}^{\prime} & 0 & 0 \\
0 & w_{3}^{\prime} & 0 \\
w_{2}^{\prime}-w_{1}^{\prime} & w_{3}^{\prime}-w_{1}^{\prime} & w_{1}^{\prime}
\end{array}\right]
$$

which has an inverse mapping

$$
\left[\begin{array}{ccc}
w_{1}^{\prime} w_{3}^{\prime} & 0 & 0 \\
0 & w_{1}^{\prime} w_{2}^{\prime} & 0 \\
w_{1}^{\prime} w_{3}^{\prime}-w_{2}^{\prime} w_{3}^{\prime} & w_{1}^{\prime} w_{2}^{\prime}-w_{2}^{\prime} w_{3}^{\prime} & w_{2}^{\prime} w_{3}^{\prime}
\end{array}\right]
$$

Thus, the preimage of $L(s, t)$ is given as a point $(1-\alpha(s, t)-\beta(s, t)) \mathbf{x}_{1}+\alpha(s, t) \mathbf{x}_{2}+$ $\beta(s, t) \mathbf{x}_{3}$ on the triangle $\Delta \mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3}$, where

$$
\alpha(s, t)=\frac{s w_{1}^{\prime} w_{3}^{\prime}}{s w_{1}^{\prime} w_{3}^{\prime}+t w_{1}^{\prime} w_{2}^{\prime}+(1-s-t) w_{2}^{\prime} w_{3}^{\prime}}, \beta(s, t)=\frac{t w_{1}^{\prime} w_{2}^{\prime}}{s w_{1}^{\prime} w_{3}^{\prime}+t w_{1}^{\prime} w_{2}^{\prime}+(1-s-t) w_{2}^{\prime} w_{3}^{\prime}} .
$$

4. (20 points)
(a) (10 points) Design a recursive bottom-up algorithm for constructing an OBB tree for an open polygonal chain \mathcal{C} that connects a sequence of points $\mathbf{p}_{i}=\left(x_{i}, y_{i}\right)$, for $i=0, \cdots, 2^{10}$.

- At the leaf level, the OBB is a line segment connecting two adjacent points \mathbf{p}_{i-1} and \mathbf{p}_{i}, for $i=1, \cdots, 2^{10}$. At this leaf level, there is no approximation error and the thickness of the corresponding OBB volume is zero.
- At an intermediate level, assume that the left-child OBB is along the direction of the line segment $\overline{\mathbf{p}_{(i-1) * 2^{h}} \mathbf{p}_{i * 2^{h}}}$ and the right-child OBB is along the direction of the line segment $\overline{\mathbf{p}_{i * 2^{h}} \mathbf{p}_{(i+1) * 2^{h}}}$, for $i=1, \cdots, 2^{(k-h)}$.
- The parent OBB is along the direction of the line segment $\overline{\mathbf{p}_{(i-1) * 2^{h}} \mathbf{p}_{(i+1) * 2^{h}}}$, and the minimum bounding box containing the eight cornet points of the left and right children OBBs.
(b) (5 points) Discuss the relative advantages and disadvantages of the bottom-up OBB-tree construction against the top-down approach you have taken for Programming \#3-1.
- More efficient than the top-down construction.
- But not as tight as the OBBs generated by the top-down approach.
(c) (5 points) For an AABB-tree construction for the polygonal chain \mathcal{C}, do the two approaches (i.e, top-down and bottom-up approaches) generate different AABB trees? Why?
- The two approaches generate the same AABBs.
- The minimum $A A B B$ containing two children $A A B B$ s is in fact the minimum AABB for the corresponding subchain.

5. (20 points) Fill in the blanks in the following OpenGL program segments

