Programming \#1 (4190.562)

Due: March 28, 2018

A cubic Bézier curve $C(t)=\sum_{l=0}^{3} \mathbf{b}_{l} B_{l}^{3}(t)=\sum_{l=0}^{3}\left(x_{l}, y_{l}\right) B_{l}^{3}(t)=(x(t), y(t)), 0 \leq t \leq 1$, can be used to define a different planar curve $D(t)$ as follows:

$$
D(t)=C(t)+\alpha(\sin n \pi t) C^{\prime}(t)^{\perp}, \quad 0 \leq t \leq 1
$$

where α is a scale factor, and n is a natural number. When we edit the curve $C(t)$, the other curve $D(t)$ also changes its shape. Compute the self-intersection points of $D(t), 0 \leq t \leq 1$.

