PROGRAMMING ASSIGNMENT #2-2

DUE: MAY 2, 2016

BVH for Triangular Mesh Models

PQP Library

- A Proximity Query Package
 - Collision Detection
 - Distance Computation
 - Tolerance Verification

PQP Bounding Volume

SSV (Swept Sphere Volume)

PQP Bounding Volume

RSS (Rectangle Swept Sphere)

Distance Bound

dist(rect1, rect2)-r1-r2<= Exact Dist <= dist(rect1, rect2)+r1+r2

PQP Applications

Oynamic Simulation

PQP Applications

Path Planning

How to Get PQP

- You can download it from <u>http://gamma.cs.unc.edu/SSV</u>
- PQP can be compiled on Win32 and UNIX
- It also includes intuitive examples

Step 1: Build BVH

PQP_Model* bunny = new PQP_Model(); bunny.BeginModel();

for (int i = 0; i < ntris; i++) bunny->AddTri(t1.p1, t1.p2, t1.p3, i);

bunny.EndModel();

Step 2: Collision Detection

PQP_Model bunny, torus;

Build BVH...(step1)

PQP_CollideResult cres; **PQP_Collide**(&cres, R1, T1, b1, R2, T2, b2, PQP_ALL_CONTACTS);

Drawing Model

// drawing bunny
glBegin(GL_POLYGON);
glVertex3fv(bunny->tris[i].p1);
glVertex3fv(bunny->tris[i].p2);
glVertex3fv(bunny->tris[i].p3);
glEnd();

PQP_CollideResult

- Variable "cres" has collision result.
- cres.id1(i) and cres.id2(i) are the ids of triangles.
- However, you cannot use bunny->tris[cres.id1(i)] because index of the array and id can be different.
 You may want to store triangles in another array.

Assignment #2-2

- Suild BVH for 3D triangular mesh models.
- Collision detection and visualization
- Draw colliding triangles