Programming \#2: Part 2 (4190.562)

Due: May 30, 2014

A bicubic Bézier surface $S(u, v)=\sum_{k=0}^{3} \sum_{l=0}^{3} \mathbf{b}_{k l} B_{k}^{3}(u) B_{l}^{3}(v), 0 \leq u, v \leq 1$, can be bounded by a hierarchy of unions of Tetrahedron Swept Spheres $O_{\epsilon_{h}}\left(T_{i j}^{h}\right)$, each bounding the surface patch $S_{i j}^{h}(u, v)=S(u, v)$, where $(i-1) / 2^{h} \leq u \leq i / 2^{h},(j-1) / 2^{h} \leq v \leq j / 2^{h}$, for $i, j=1, \cdots, 2^{h}$. The tetrahedron $T_{i j}^{h}$ is determined by the four corners of $S_{i j}^{h}(u, v)$: $S\left((i-1) / 2^{h},(j-1) / 2^{h}\right), S\left((i-1) / 2^{h}, j / 2^{h}\right), S\left(i / 2^{h},(j-1) / 2^{h}\right)$, and $S\left(i / 2^{h}, j / 2^{h}\right)$. The radius $\epsilon_{i j}^{h}$ can be taken as

$$
\begin{aligned}
& \epsilon_{i j}^{h}=\frac{1}{2^{2 h+3}} \cdot \max \left\{6 \max _{k=1,2 ; 0 \leq l \leq 3}\left\|\mathbf{b}_{k+1, l}-2 \mathbf{b}_{k, l}+\mathbf{b}_{k-1, l}\right\|,\right. \\
& 6 \max _{0 \leq k \leq 3 ; l=1,2}\left\|\mathbf{b}_{k, l+1}-2 \mathbf{b}_{k, l}+\mathbf{b}_{k, l-1}\right\|, \\
&\left.18 \max _{k, l=0,1,2}\left\|\mathbf{b}_{k+1, l+1}-\mathbf{b}_{k+1, l}-\mathbf{b}_{k, l+1}+\mathbf{b}_{k, l}\right\|\right\}
\end{aligned}
$$

Part II: Design a system that can deform the shape of two bicubic Bézier surfaces S_{1} and S_{2} by moving their control points. Moreover, implement an algorithm for computing the intersection between the two deformable surfaces.

