Lecture Note (4190.410)

Unit Quaternions

Quaternions were discovered by Sir William Hamilton in 1843 as a generalization of complex numbers. Instead of one imaginary unit i, three imaginary units i, j, k are used in quaternions:

$$\begin{aligned} 1\cdot i = i, \quad 1\cdot j = j, \quad 1\cdot k = k, \qquad i^2 = j^2 = k^2 = -1, \\ i\cdot j = k, \quad j\cdot i = -k, \quad j\cdot k = i, \quad k\cdot j = -i, \qquad k\cdot i = j, \quad i\cdot k = -j. \end{aligned}$$

Each quaternion is represented as

$$q = w + xi + yj + zk$$

where w, x, y, z are real numbers. We may represent the quaternion as a 4-tuple of real numbers: q = (w, x, y, z).

For two quaternions: $q_1 = (w_1, x_1, y_1, z_1)$, $q_2 = (w_2, x_2, y_2, z_2)$, the quaternion addition and multiplication are defined as follows

$$q_1 + q_2 = (w_1 + w_2, x_1 + x_2, y_1 + y_2, z_1 + z_2),$$

$$q_1 \cdot q_2 = (w_1 w_2 - \langle (x_1, y_1, z_1), (x_2, y_2, z_2) \rangle,$$

$$w_1(x_2, y_2, z_2) + w_2(x_1, y_1, z_1) + (x_1, y_1, z_1) \times (x_2, y_2, z_2)),$$

where $\langle *, * \rangle$ means the inner product of two three-dimensional vectors.

Unit Quaternions and 3D Rotations

Unit quaternions are closely related to three-dimensional rotations. Given a unit quaternion $q = (w, x, y, z) \in S^3$, $w^2 + x^2 + y^2 + z^2 = 1$, we can represent it as follows

$$q = (w, x, y, z) = (\cos \theta, \sin \theta(a, b, c)),$$

where

$$(a,b,c) = \frac{(x,y,z)}{\sqrt{x^2 + y^2 + z^2}},$$

$$\theta = \arctan\left(\frac{\sqrt{x^2 + y^2 + z^2}}{w}\right).$$

The unit quaternion $q = (\cos \theta, \sin \theta(a, b, c)) \in S^3$ represents the rotation by angle 2θ about $(a, b, c) \in S^2$. For any three-dimensional point $(\alpha, \beta, \gamma) \in R^3$, we can show that

$$(\cos\theta,\sin\theta(a,b,c))\cdot(0,\alpha,\beta,\gamma)\cdot(\cos\theta,-\sin\theta(a,b,c))=(0,\bar{\alpha},\bar{\beta},\bar{\gamma}),$$

which is the result of rotating (α, β, γ) by angle 2θ about the axis parallel to (a, b, c).

The Rotation Matrix

$$\begin{bmatrix} \bar{\alpha} \\ \bar{\beta} \\ \bar{\gamma} \end{bmatrix} = \begin{bmatrix} x^2 + w^2 - y^2 - z^2 & 2xy - 2wz & 2xz + 2wy \\ 2xy + 2wz & y^2 + w^2 - x^2 - z^2 & 2yz - 2wx \\ 2xz - 2wy & 2yz + 2wx & w^2 + z^2 - x^2 - y^2 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$
$$= \begin{bmatrix} 1 - 2y^2 - 2z^2 & 2xy - 2wz & 2xz + 2wy \\ 2xy + 2wz & 1 - 2x^2 - 2z^2 & 2yz - 2wx \\ 2xz - 2wy & 2yz + 2wx & 1 - 2x^2 - 2y^2 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

For each unit quaternion $q=(w,x,y,z)\in S^3$, let R_q denote the above 3×3 matrix. Then one can check that R_q is a three-dimensional rotational matrix, i.e., $R_q\in SO(3)$:

- 1. Each row is a unit vector, and each column is a unit vector.
- 2. Rows are mutually orthogonal each other, and columns are mutually orthogonal each other.
- 3. The determinant of R_q is 1.

Remark:

1.
$$R_{-a} = R_a$$
.

2. If
$$q_1, q_2 \in S^3$$
, then $q_2 \cdot q_1 \in S^3$.

3.
$$R_{q_2}R_{q_1} = R_{q_2 \cdot q_1}$$
.

Quaternion Calculus

Given a unit quaternion curve $q(t) \in S^3$, its derivative q'(t) is given in the following form:

$$q'(t) = (0, v(t)) \cdot q(t),$$

for some $v(t) \in \mathbb{R}^3$.

To show this, we define

$$\gamma(h) = q(t+h) \cdot \overline{q(t)},$$

where $\overline{q(t)}=(w(t),-x(t),-y(t),-z(t))\in S^3$ is the conjugate of q(t). Note that $\gamma(h)\in S^3$ and

$$\gamma(0) = q(t) \cdot \overline{q(t)} = (1, 0, 0, 0).$$

(For each unit quaternion q, its conjugate \overline{q} is also the inverse of q with respect to the quaternion multiplication. We can also show that $\overline{q_1 \cdot q_2} = \overline{q_2} \cdot \overline{q_1}$.) Thus $\gamma'(0)$ is orthogonal to (1,0,0,0) in \mathbb{R}^4 . Moreover, consider the following relation

$$q(t+h) = q(t+h) \cdot \overline{q(t)} \cdot q(t)$$

= $\gamma(h) \cdot q(t)$.

Differentiating by h, we have

$$q'(t+h) = \gamma'(h) \cdot q(t).$$

Setting h = 0 in the above equation, we finally get

$$q'(t) = \gamma'(0) \cdot q(t) = (0, v(t)) \cdot q(t),$$

for some $v(t) \in \mathbb{R}^3$. (Note that $\gamma'(0)$ is orthogonal to (1,0,0,0) and it is also dependent on t.)

Angular Velocity

Given a point $p \in R^3$ and a continuous rotation $R_{q(t)}$ implied by a unit quaternion curve $q(t) \in S^3$, the rotated point $p(t) = R_{q(t)}(p)$ is contained in a sphere with radius ||p|| and center (0,0,0):

$$(0, p(t)) = q(t) \cdot (0, p) \cdot \overline{q(t)}.$$

Differentiating the above, we get

$$\begin{array}{lll} (0,p'(t)) & = & q'(t) \cdot (0,p) \cdot \overline{q(t)} + q(t) \cdot (0,p) \cdot \overline{q'(t)} \\ & = & (0,v(t)) \cdot q(t) \cdot (0,p) \cdot \overline{q(t)} + q(t) \cdot (0,p) \cdot \overline{(0,v(t)) \cdot q(t)} \\ & = & (0,v(t)) \cdot q(t) \cdot (0,p) \cdot \overline{q(t)} + q(t) \cdot (0,p) \cdot \overline{q(t)} \cdot \overline{(0,v(t))} \\ & = & (0,v(t)) \cdot (0,p(t)) + (0,p(t)) \cdot (0,-v(t)) \\ & = & (0,v(t) \times p(t) + p(t) \times (-v(t)) \\ & = & (0,2v(t) \times p(t)). \end{array}$$

This implies that the angular velocity $\omega(t)$ of the rotation $R_{q(t)}$ is given as follows

$$\omega(t) = 2v(t).$$

Exercises

Ex1: Consider a rotation about axis (1,1,1) by angle 60° . What is the corresponding 3×3 rotation matrix?

Solution:

$$(a, b, c) = \frac{1}{\sqrt{3}}(1, 1, 1) \in S^2$$
$$2\theta = 60^\circ \implies \theta = 30^\circ$$

(The rotation angle 60° in the physical world should be divided by 2 in the corresponding quaternion representation!)

$$(\cos \theta, \sin \theta(a, b, c)) = \left(\frac{\sqrt{3}}{2}, \frac{1}{2} \cdot \frac{1}{\sqrt{3}}(1, 1, 1)\right) = \left(\frac{\sqrt{3}}{2}, \frac{1}{2\sqrt{3}}(1, 1, 1)\right)$$

$$w = \frac{\sqrt{3}}{2}, \ x = y = z = \frac{1}{2\sqrt{3}}$$

$$2xy = \frac{1}{6}, \ 2yz = \frac{1}{6}, \ 2xz = \frac{1}{6}$$

$$2wx = \frac{1}{2}, \ 2wy = \frac{1}{2}, \ 2wz = \frac{1}{2}$$

$$2x^2 = \frac{1}{6}, \ 2y^2 = \frac{1}{6}, \ 2z^2 = \frac{1}{6}$$

$$R_q = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{2} & \frac{2}{3} & \frac{2}{3} \end{bmatrix}$$

Ex2: Given a rotation matrix

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \in SO(3),$$

what is the corresponding unit quaternion $q = (w, x, y, z) \in S^3$ such that $R_q = R$?

Solution:

$$r_{11} + r_{22} + r_{33} = 3 - 4(x^2 + y^2 + z^2) = 3 - 4(1 - w^2) = 4w^2 - 1$$

$$w = \pm \frac{\sqrt{1 + r_{11} + r_{22} + r_{33}}}{2}$$

$$4wz = r_{21} - r_{12} \Rightarrow z = \frac{z_{21} - r_{12}}{4w}$$

$$4wy = r_{13} - r_{31} \Rightarrow y = \frac{z_{13} - r_{31}}{4w}$$

$$4wx = r_{32} - r_{23} \Rightarrow x = \frac{z_{32} - r_{23}}{4w}$$