. (10 points) What three elimination matrices Eo1, E31, B3y put A into upper triangular form
By Es1En A = U? Multiply by B3, B, and Eg* to factor A into LU where [, — B Bt El,

Find L and U:
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2. (10 points) Find A~ by elimination on [4 I]:
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3. (25 points)

(a) (8 points) Find the rank of A4, and give a basis for its nullspace:

(b) (3 points) The first 3 rows of U are a basis for the row space of A r false?
(c) (38 points) Columns 1, 3, 6 of U are a basis for the column space of A - true o
(

d) (8 points) The four rows of A are a basis for the row space of A - true or
)

(e) (5 points) Find as many linearly independent vectors b as possible for which Ax — b has a
solution.

(f) (3 points) In elimination on A, what multiple of the third row is subtracted to knock out the
fourth row?
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4. (15 points)
(a) (6 points) Compute the projection matrices P, = a;a /a’a;, i = 1,2,3, onto the lines
al—( 1y 22) 82—(22 -l) andaa-(2 -1, 2)
(b) (3 points) Project b = (1,0, 0) to p; on the lines through a;, i = 1,2, 3.
(¢) (6 points) Verify that p; + py + p3 = b and P+P,+P=1.
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5. (20 points) We want to fit a plane z = C'+ Dz + Ey to the four points:

z=3 at a=1, y=1; z=6 at =0,y
Yy

3
p=bh at =2 y=l; z=0 at z=, 0

(a) (10 points) Find 4 equations in 3 unknowns to pass a plane through the points (if there is
such a plane).

(b) (10 points) Find 3 equations in 3 unknowns for the best least-squares solution.
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6. (10 points) True or false (give an exatuple in either case)

(a) (5 points) Q! is an orthogonal matrix when () is an orthogonal matrix.

(b) (5 points) If a 3 x 2 matrix Q has orthonormal columns, then (|Qx|| always equals |x||.
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7. (10 points) From the formula ACT = (det A)I, show that det C = (det A)™-1,
dot (A-CT)= dlet ( Cets) T)
dlot (4)- dot(<T) = (et)-clet ()
det (A) - det-(c) = (det-)"
o det-(2) = (et-A)"







