Linear and Nonlinear Computation Models (CSE 4190.313)

Midterm Exam: April 20, 2016

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	

Name:	

ID	No:	

Dept:	
-	

1. (15 points) Construct a matrix A with entries $1, 2, \dots, 9$. All rows and columns and diagonals add to 15. The first row could be 8, 3, 4. Show your work.

- 2. (15 points) Starting from a 3 by 3 matrix A with pivots 2, 7, 6, add a fourth row and column to produce M.
 - (a) (3 points) What are the first three pivots for M?
 - (b) (7 points) Explain why.
 - (c) (5 points) What fourth row and column are sure to produce 9 as the fourth pivot?

3. (15 points) Given an $m \times n$ matrix A with rank r, if you know a particular solution \mathbf{x}_p (free variables = 0) and all special solutions $\mathbf{x}_1, \dots, \mathbf{x}_{n-r}$, for

$$A\mathbf{x} = \mathbf{b},$$

find a solution $\begin{bmatrix} \mathbf{y}_p \\ \mathbf{Y}_p \end{bmatrix}$ and all special solutions $\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{Y}_1 \end{bmatrix}, \cdots, \begin{bmatrix} \mathbf{y}_{2n-2r} \\ \mathbf{Y}_{2n-2r} \end{bmatrix}$, for $\begin{bmatrix} A & 2A \\ 3A & 7A \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \mathbf{Y} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ 4\mathbf{b} \end{bmatrix}$.

- 4. (15 points) The average of the four times t_i , (i = 1, 2, 3, 4), is $\bar{t} = \frac{1}{4}(0 + 1 + 3 + 4) = 2$. Moreover, the average of the four b_i , (i = 1, 2, 3, 4), is $\bar{b} = \frac{1}{4}(0 + 8 + 8 + 20) = 9$.
 - (a) (7 points) Show that the best line goes through the center point $(\bar{t}, \bar{b}) = (2, 9)$.
 - (b) (8 points) Explain why $C + D\bar{t} = \bar{b}$ comes from the first equation in $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.

5. (15 points) Apply the Gram-Schmidt process to

$$\mathbf{a} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 3\\0\\0 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 1\\2\\3 \end{bmatrix},$$

and write the result in the form A = QR.

- 6. (15 points) What do you know about C(A) when the number of solutions to $A\mathbf{x} = \mathbf{b}$ is
 - (a) (5 points) 0 or 1, depending on **b**.
 - (b) (5 points) ∞ , independent of **b**.
 - (c) (5 points) 0 or ∞ , depending on **b**.

7. (10 points)

(a) (5 points) In the following Gram-Schmidt formula, show that C is orthogonal to \mathbf{q}_1 and \mathbf{q}_2 :

$$C = \mathbf{c} - (\mathbf{q}_1^T \mathbf{c}) \mathbf{q}_1 - (\mathbf{q}_2^T \mathbf{c}) \mathbf{q}_2.$$

(b) (5 points) In the following modified Gram-Schmidt steps, show that the vector \overline{C} is the same as the vector C in the above equation:

$$C^* = \mathbf{c} - (\mathbf{q}_1^T \mathbf{c}) \mathbf{q}_1, \quad \overline{C} = C^* - (\mathbf{q}_2^T C^*) \mathbf{q}_2.$$