Linear and Nonlinear Computation Models (CSE 4190.313)

Midterm Exam: April 25, 2018

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	

Name:	

- ID No: _____
- Dept: _____

1. (15 points) Assuming all of A, B, A+B are invertible, show that $C = B^{-1} + A^{-1}$ is also invertible, and find a formula for C^{-1} .

2. (15 points) Find a basis for the orthogonal complement of the row space of A:

$$A = \left[\begin{array}{rrr} 1 & 0 & 2 \\ 1 & 1 & 4 \end{array} \right].$$

Split $\mathbf{x} = (3, 3, 3)^T$ into a row space component \mathbf{x}_r , and a nullspace component \mathbf{x}_n .

3. (10 points) Prove that the trace of $P = \mathbf{a}\mathbf{a}^T/\mathbf{a}^T\mathbf{a}$ always equals 1.

4. (15 points) Find the projection of \mathbf{b} onto the column space of A:

$$A = \begin{bmatrix} 1 & 1\\ 1 & -1\\ -2 & 4 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1\\ 2\\ 7 \end{bmatrix}.$$

- 5. (15 points)
 - (a) (5 points) If the columns of A are orthogonal to each other, what can you say about the form of $A^T A$? If the columns are orthonormal, what can you say then?
 - (b) (10 points) Under what conditions on the columns of A (which may be rectangular) is $A^T A$ invertible? Justify your answer.

6. (15 points) Find the fourth Legendre polynomial, which is orthogonal to 1, x, and $x^2 - \frac{1}{3}$, over the interval $-1 \le x \le 1$.

7. (15 points) The 4×4 Hadamard matrix H is given as follows:

Find H^{-1} and write $\mathbf{v} = (7, 5, 3, 1)^T$ as a combination of the columns of H.