Quiz #2 (CSE 4190.313)

Monday, April 11, 2016

 Name:
 ID No:

1. (10 points) Given an $m \times n$ matrix A with rank r, if you know a particular solution \mathbf{x}_p (free variables = 0) and all special solutions $\mathbf{x}_1, \dots, \mathbf{x}_{n-r}$, for

$$A\mathbf{x} = \mathbf{b},$$
(a) (5 points) Find a solution $\begin{bmatrix} \mathbf{y}_p \\ \mathbf{Y}_p \end{bmatrix}$ and all special solutions $\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{Y}_1 \end{bmatrix}, \cdots, \begin{bmatrix} \mathbf{y}_{2n-r} \\ \mathbf{Y}_{2n-r} \end{bmatrix},$ for

$$\begin{bmatrix} A & 2A \\ 3A & 6A \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \mathbf{Y} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ 3\mathbf{b} \end{bmatrix}.$$
(b) (5 points) Find a solution $\begin{bmatrix} \mathbf{y}_p \\ \mathbf{y}_p \\ \mathbf{Y}_p \end{bmatrix}$ and all special solutions $\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_1 \\ \mathbf{Y}_1 \end{bmatrix}, \cdots, \begin{bmatrix} \mathbf{y}_{3n-r} \\ \mathbf{y}_{3n-r} \\ \mathbf{Y}_{3n-r} \end{bmatrix},$ for

$$\begin{bmatrix} A & A & A \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{Y} \end{bmatrix} = \mathbf{b}.$$

2. (10 points)

(a) (3 points) $A\mathbf{x} = \mathbf{b}$ has a solution under what conditions on \mathbf{b} , for the following A and \mathbf{b} ?

$$A = \begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 2 & 4 & 0 & 6 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

(b) (2 points) Find a basis for the nullspace of A?

- (c) (3 points) Find the general solution to $A\mathbf{x} = \mathbf{b}$, when a solution exists.
- (d) (2 points) What is a basis for the column space of A?

- 3. (5 points) Suppose A is a symmetric matrix $(A^T = A)$.
 - (a) (2 points) Why is its column space perpendicular to its nullspace?
 - (b) (3 points) If $A\mathbf{x} = \mathbf{0}$ and $A\mathbf{z} = 5\mathbf{z}$, which subspaces contain these eigenvectors \mathbf{x} and \mathbf{z} ? Explain why.

4. (5 points) What matrix P projects every point in \mathbb{R}^3 onto the line of intersection of the planes x + y + t = 0 and x - t = 0?

- 5. (6 points) (True or False) For the vector space M of all 3×3 matrices, justify your answer for the following problems:
 - (a) (2 points) The skew-symmetric matrices in M (with $A^T = -A$) form a subspace.
 - (b) (2 points) The unsymmetric matrices in M (with $A^T \neq A$) form a subspace.
 - (c) (2 points) The matrices that have (1, 1, 1) in their nullspace form a subspace.

6. (6 points) Apply elimination with an extra column to reach $R\mathbf{x} = \mathbf{0}$ and $R\mathbf{x} = \mathbf{d}$:

ſ	-	7		3	3	6	0		Γ	-]	3	3	6	9	1
	U	0	=	0	0	2	0	and	U	с	=	0	0	2	4	
	_	_		0	0	0	0	and		-		0	0	0	0	

Solve $R\mathbf{x} = \mathbf{0}$ (free variable = 1). What are the solutions to $R\mathbf{x} = \mathbf{d}$?

7. (10 points) Construct a matrix with the required property, or explain why you can't.

