Quiz #1 (CSE 4190.313)

Thursday, March 21, 2019

_____ ID No: _____

- Name:
 - 1. (10 points)
 - (a) (3 points) Explain why the inner product $\mathbf{x}^T \mathbf{y}$ of \mathbf{x} and \mathbf{y} equals the inner product of $P\mathbf{x}$ and $P\mathbf{y}$, where P is a permutation matrix.
 - (b) (7 points) With $\mathbf{x}^T = (1, 2, 3)$ and $\mathbf{y}^T = (1, 4, 2)$, choose a 3×3 permutation matrix P to show that $(P\mathbf{x})^T\mathbf{y}$ is not always equal to $\mathbf{x}^T(P\mathbf{y})$.

- 2. (10 points)
 - (a) (3 points) Suppose you solve $A\mathbf{x} = \mathbf{b}$ for three special right-hand sides **b**:

$$A\mathbf{x}_1 = \mathbf{e}_1, \quad A\mathbf{x}_2 = \mathbf{e}_2, \quad A\mathbf{x}_3 = \mathbf{e}_3.$$

If the solutions \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 are the columns of a matrix X, what is AX?

(b) (7 points) Find the inverses of

$$A_{1} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{bmatrix}, \quad A_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 4 & 1 \end{bmatrix}, \quad A_{3} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & 5 & 6 \\ 0 & 0 & 7 & 8 \end{bmatrix}$$

.