Quiz \#3 (CSE 4190.313)

Tuesday, May 7, 2019

Name:
ID No:

1. (15 points) Apply the Gram-Schmidt process to

$$
\mathbf{a}=\sin t, \quad \mathbf{b}=\cos t, \quad \mathbf{c}=1,
$$

under the inner product $\langle f, g\rangle=\int_{0}^{\pi} f(t) g(t) d t$.
2. (15 points)
(a) (3 points) Find a nonzero matrix A such that A^{3} is a zero matrix..
(b) (2 points) If $A \mathbf{x}=\lambda \mathbf{x}$, for some $\mathbf{x} \neq \mathbf{0}$, show that λ must be zero.
(c) (10 points) Prove that A cannot be symmetric.

Quiz \#3-2 (CSE 4190.313)

Tuesday, May 7, 2019

Name:
ID No:
3. (5 points) If $A^{2}=A$, show that $e^{A t}=I+\left(e^{t}-1\right) A$.
4. (5 points) Show that A_{i} and $B_{i}(i=1,2)$ are similar:
(a) $A_{1}=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right], \quad B_{1}=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$,
(b) $\quad A_{2}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \quad B_{2}=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right]$.
5. (10 points) Given two different bases $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$, and $\left.V_{1}, \cdots, V_{n}\right\}$, three $n \times n$ matrices $A=\left[a_{i j}\right], B=\left[b_{i j}\right], M=\left[m_{i j}\right]$ are defined as follows (for $j=1, \cdots, n$):

$$
\begin{aligned}
T \mathbf{v}_{j} & =a_{1 j} \mathbf{v}_{1}+\cdots+a_{n j} \mathbf{v}_{n} \\
T V_{j} & =b_{1 j} V_{1}+\cdots+a b_{n j} V_{n} \\
V_{j} & =m_{1 j} \mathbf{v}_{1}+\cdots+m_{n j} \mathbf{v}_{n}
\end{aligned}
$$

Show that $M B=A M$.

