Engineering Mathematics I
 (Comp 419.001)

Midterm Exam I: April 19, 1999

1. (10 points) A retired person has a sum $S(t)$ invested so as to draw interest at an annual rate r compounded continuously. Withdrawals for living expenses are made at a rate of k dollars per year; assume that the withdrawals are made continuously.
(a) If the initial value of the investment is S_{0}, determine $S(t)$ at any time.

$$
\begin{gathered}
S^{\prime}(t)=r S(t)-k, \quad \frac{d S}{S-k / r}=r d t, \quad \ln (S-k / r)=r t+c, \quad S-k / r=\alpha e^{r t} \\
S=\alpha e^{r t}+k / r, \quad S_{0}=\alpha+k / r, \quad \alpha=\left(S_{0}-k / r\right), \quad S(t)=\left(S_{0}-k / r\right) e^{r t}+k / r
\end{gathered}
$$

(b) Assuming that S_{0} and r are fixed, determine the withdrawal rate k_{0} at which $S(t)$ will remain constant.

$$
S^{\prime}(t)=0, \quad r\left(S_{0}-k_{0} / r\right) e^{r t}=0, \quad r S_{0}-k_{0}=0, \quad k_{0}=r S_{0}
$$

(c) If k exceeds the value k_{0}, then $S(t)$ will decrease and ultimately become zero. Find the time T at which $S(T)=0$.

$$
\left(S_{0}-k / r\right) d^{r T}+k / r=0, \quad e^{r T}=\frac{-k / r}{S_{0}-k / r}=\frac{k}{k-r S_{0}}, \quad T=\frac{1}{r} \ln \left(\frac{k}{k-r S_{0}}\right)
$$

2. (5 points) In the following equation, determine the value of b for which the equation is exact and then solve it using that value of b :

$$
\begin{gathered}
\left(y e^{2 x y}+x\right) d x+b x e^{2 x y} d y=0 . \\
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}, \quad e^{2 x y}+2 x y e^{2 x y}=b e^{2 x y}+2 b x y e^{2 x y}, \quad b=1 \\
u=\int M d x=\frac{1}{2} e^{2 x y}+\frac{1}{2} x^{2}+k(y), \quad \frac{\partial u}{\partial y}=x e^{2 x y}+k^{\prime}(y)=N=x e^{2 x y}, \quad u(x, y)=\frac{1}{2} e^{2 x y}+\frac{1}{2} x^{2}=c
\end{gathered}
$$

3. (5 points) Solve the following initial value problem

$$
y^{\prime}+x y=x y^{-1}, \quad y(0)=2
$$

Let $u=y^{2}$, then $u^{\prime}=2 y y^{\prime}$ and $u(0)=4$. Thus, we have

$$
\begin{array}{r}
2 y y^{\prime}+2 x y^{2}=2 x, \quad u^{\prime}+2 x u=2 x, \quad h=\int 2 x d x=x^{2} \\
u=e^{-x^{2}}\left[\int e^{x^{2}} 2 x d x+c\right]=e^{-x^{2}}\left[e^{x^{2}}+c\right]=1+c e^{-x^{2}} \\
u(0)=1+c=4, \quad c=3, \quad u(x)=1+3 e^{-x^{2}}, \quad y(x)=\sqrt{1+3 e^{-x^{2}}}
\end{array}
$$

4. (10 points) A series circuit has a capacitor of 10^{-5} farad, a resistor of 3×10^{2} ohms, and an inductor of 0.2 henry. The initial charge on the capacitor is 10^{-6} coulomb and there is no initial current. Find the charge on the capacitor at any time t.

$$
\begin{array}{r}
10^{5} Q+300 I+0.2 I^{\prime}=0, \quad Q(0)=10^{-6} \\
10^{5} Q+300 Q^{\prime}+0.2 Q^{\prime \prime}=0, \quad Q^{\prime \prime}+1500 Q^{\prime}+500000 Q=0 \\
(\lambda+500)(\lambda+1000)=0, \quad Q=c_{1} e^{-500 t}+c_{2} e^{-1000 t}, \quad c_{1}+c_{2}=10^{-6} \\
Q^{\prime}=-500 c_{1} e^{-500 t}-1000 c_{2} e^{-1000 t}, \quad Q^{\prime}(0)=c_{1}+2 c_{2}=-I(0) / 500=0 \\
c_{1}=2 \cdot 10^{-6}, c_{2}=-10^{-6}, \quad Q(t)=2 \cdot 10^{-6} e^{-500 t}-10^{-6} e^{-1000 t}
\end{array}
$$

5. (5 points) Solve the following initial value problem

$$
\begin{array}{r}
y^{\prime \prime}+4 y=3 \sin 2 x, \quad y(0)=2, y^{\prime}(0)=-1 . \\
\lambda^{2}+4=0, \quad \lambda= \pm 2 i, \quad y_{h}=c_{1} \cos 2 x+c_{2} \sin 2 x, \quad y_{p}=c_{3} x \cos 2 x+c_{4} x \sin 2 x \\
y_{p}^{\prime \prime}=-4 c_{3} \sin 2 x-4 c_{3} x \cos 2 x+4 c_{4} \cos 2 x-4 c_{4} x \sin 2 x \\
y_{p}^{\prime \prime}+4 y_{p}=-4 c_{3} \sin 2 x+4 c_{4} \cos 2 x=3 \sin 2 x, \quad c_{3}=-\frac{3}{4}, c_{4}=0 \\
y=c_{1} \cos 2 x+c_{2} \sin 2 x-\frac{3}{4} x \cos 2 x, \quad y(0)=c_{1}=2, \quad y^{\prime}(0)=2 c_{2}-\frac{3}{4}=-1, \quad c_{2}=-\frac{1}{8} \\
y=2 \cos 2 x-\frac{1}{8} \sin 2 x-\frac{3}{4} x \cos 2 x
\end{array}
$$

6. (5 points) Solve the following initial value problem

$$
\begin{array}{r}
x^{2} y^{\prime \prime}+x y^{\prime}-y=x \ln x, \quad y(1)=0, y^{\prime}(1)=0 . \\
y=x^{m}, \quad m(m-1)+m-1=0, \quad m^{2}-1=0, \quad m= \pm 1, \quad y_{1}=x, y_{2}=x^{-1} \\
y_{h}=c_{1} x+c_{2} x^{-1}, \quad W=-2 x^{-1}, \quad r=\frac{\ln x}{x} \operatorname{since} y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{1}{x^{2}} y=\frac{\ln x}{x} \\
y_{p}=-y_{1} \int \frac{y_{2} r}{W} d x+y_{2} \int \frac{y_{1} r}{W} d x=\frac{1}{4} x(\ln x)^{2}-\frac{1}{4} x \ln x+\frac{1}{8} x \\
y=c_{1} x+c_{2} x^{-1}+\frac{1}{4} x(\ln x)^{2}-\frac{1}{4} x \ln x+\frac{1}{8} x, \quad y(1)=c_{1}+c_{2}+\frac{1}{8}=0 \\
y^{\prime}=c_{1}-c_{2} x^{-2}+\frac{1}{4}(\ln x)^{2}+\frac{1}{4} \ln x-\frac{1}{8}, \quad y^{\prime}(1)=c_{1}-c_{2}-\frac{1}{8}=0, \quad c_{1}=0, c_{2}=-\frac{1}{8} \\
y=\frac{1}{8} x-\frac{1}{8} x^{-1}-\frac{x}{4} \ln x+\frac{x}{4}(\ln x)^{2}
\end{array}
$$

7. (10 points) The gamma function is defined as follows

$$
\Gamma(p+1)=\int_{0}^{\infty} e^{-x} x^{p} d x
$$

(a) Show that for $p>0$

$$
\begin{gathered}
\Gamma(p+1)=p \Gamma(p) \\
\Gamma(p+1)=\int_{0}^{\infty} e^{-x} x^{p} d x=\left[-e^{-x} x^{p}\right]_{0}^{\infty}+p \int_{0}^{\infty} e^{-x} x^{p-1} d x=p \Gamma(p)
\end{gathered}
$$

(b) Show that $\Gamma(1)=1$.

$$
\Gamma(1)=\int_{0}^{\infty} e^{-x} x^{0} d x=\left[-e^{-x}\right]_{0}^{\infty}=1
$$

(c) For a positive integer n, show that

$$
\begin{gathered}
\Gamma(n+1)=n! \\
\Gamma(n+1)=n \Gamma(n)=n(n-1) \Gamma(n-1)=\cdots=n!\Gamma(1)=n!
\end{gathered}
$$

(d) Show that for $p>0$

$$
\begin{aligned}
& p(p+1)(p+2) \cdots(p+n-1)=\Gamma(p+n) / \Gamma(p) . \\
\Gamma(p+n) & =(p+n-1) \Gamma(p+n-1)=(p+n-1)(p+n-2) \Gamma(p+n-2) \\
& =\cdots=(p+n-1)(p+n-2) \cdots p \Gamma(p) \\
\Gamma(p+n) / \Gamma(p) & =p(p+1)(p+2) \cdots(p+n-2)(p+n-1)
\end{aligned}
$$

8. (5 points) Show that

$$
F^{(n)}(s)=\mathcal{L}\left[(-t)^{n} f(t)\right] .
$$

$F(s)=\int e^{-s t} f(t) d t, \quad F^{\prime}(s)=\int e^{-s t}(-t) f(t) d t, \quad F^{\prime \prime}(s)=\int e^{-s t}(-t)^{2} f(t) d t$
Assume $F^{(k)}(s)=\int e^{-s t}(-t)^{k} f(t) d t$, then $F^{(k+1)}(s)=\int e^{-s t}(-t)^{k+1} f(t) d t$
9. (5 points) Show that

$$
\begin{gathered}
\mathcal{L}^{-1}\left(\frac{s^{2}}{\left(s^{2}+\omega^{2}\right)^{2}}\right)=\frac{1}{2 \omega}(\sin \omega t+\omega t \cos \omega t) . \\
\mathcal{L}^{-1}\left(\frac{s^{2}}{\left(s^{2}+\omega^{2}\right)^{2}}\right)=\mathcal{L}^{-1}\left(\frac{s}{s^{2}+\omega^{2}} \cdot \frac{s}{s^{2}+\omega^{2}}\right)=\cos \omega t * \cos \omega t=\int_{0}^{t} \cos \omega \tau \cdot \cos \omega(t-\tau) d \tau \\
=\frac{1}{2} \int_{0}^{t}[\cos \omega t+\cos \omega(2 \tau-t)] d \tau=\frac{1}{2} t \cos \omega t+\frac{1}{2}\left[\frac{1}{2 \omega} \sin \omega(2 \tau-t)\right]_{0}^{t}=\frac{1}{2} t \cos \omega t+\frac{1}{2 \omega} \sin \omega t
\end{gathered}
$$

10. (10 points) Solve the following integral equation

$$
\begin{gathered}
y(t)=t e^{t}-2 e^{t} \int_{0}^{t} e^{-\tau} y(\tau) d \tau \\
y(t)=t e^{t}-2 \int_{0}^{t} e^{t-\tau} y(\tau) d \tau=t e^{t}-2 y(t) * e^{t}, \quad Y(s)=\frac{1}{(s-1)^{2}}-2 Y(s) \frac{1}{s-1} \\
Y(s)=\frac{1}{2}\left(\frac{1}{s-1}-\frac{1}{s+1}\right), \quad y(t)=\frac{1}{2}\left(e^{t}-e^{-t}\right)=\sinh t
\end{gathered}
$$

11. (10 points) Solve the following initial value problem

$$
\begin{array}{r}
y_{1}^{\prime \prime}=y_{1}+3 y_{2}, \quad y_{1}(0)=2, y_{1}^{\prime}(0)=3, \\
y_{2}^{\prime \prime}=4 y_{1}-4 e^{t}, \quad y_{2}(0)=1, y_{2}^{\prime}(0)=2 . \\
\left(y_{1}-y_{2}\right)^{\prime \prime}=-3\left(y_{1}-y_{2}\right)+4 e^{t}, \quad\left(y_{1}-y_{2}\right)(0)=1,\left(y_{1}-y_{2}\right)^{\prime}(0)=1 \\
s^{2}\left(Y_{1}-Y_{2}\right)-s-1=-3\left(Y_{1}-Y_{2}\right)+\frac{4}{s-1} \\
Y_{1}-Y_{2}=\frac{s+1}{s^{2}+3}+\frac{4}{\left(s^{2}+3\right)(s-1)}=\frac{1}{s-1} \\
y_{1}-y_{2}=e^{t}, \quad y_{1}=y_{2}+e^{t} \\
y_{2}^{\prime \prime}=4 y_{2}, \quad s^{2} Y_{2}-s-2=4 Y_{2}, \quad Y_{2}=\frac{1}{s-2}, \quad y_{2}=e^{2 t}, y_{1}=e^{t}+e^{2 t}
\end{array}
$$

12. (10 points) Solve the following initial value problem

$$
\begin{aligned}
y_{1}^{\prime}+y_{2} & =2[1-u(t-2 \pi)] \cos t \\
y_{1}+y_{2}^{\prime} & =0 \\
y_{1}(0) & =0 \\
y_{2}(0) & =1
\end{aligned}
$$

13. (5 points) Find the inverse Laplace transform of the following function

$$
\begin{gathered}
\frac{s+1}{s^{2}} e^{-s} \\
\mathcal{L}^{-1}\left[\left(\frac{1}{s}+\frac{1}{s^{2}}\right) e^{-s}\right]=\mathcal{L}^{-1}\left[\frac{1}{s} e^{-s}\right]+\mathcal{L}^{-1}\left[\frac{1}{s^{2}} e^{-s}\right]=1 \cdot u(t-1)+(t-1) \cdot u(t-1)=t \cdot u(t-1)
\end{gathered}
$$

14. (5 points) Set up the model of the network in the following figure, assuming that all charges and currents are 0 when the switch is closed at $t=0$.

$$
\begin{aligned}
5 i_{1}^{\prime}+20\left(i_{1}-i_{2}\right) & =60 \\
20\left(i_{2}^{\prime}-i_{1}^{\prime}\right)+20 i_{2}+30 i_{2}^{\prime} & =0
\end{aligned}
$$

