Quiz \#6 (CSE 400.001)

November 23, 2011 (Wednesday)

1. (6 points) It is impossible for a system of linear equations to have exactly two or exactly three solutions. Explain why by answering the following three questions:
(a) (2 points) If $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ are two different solutions, what is another one?
(b) (2 points) If $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$, and $\left(x_{3}, y_{3}, z_{3}\right)$ are three different solutions, what is another one?
(c) (2 points) If 25 planes meet at three different points, where else do they meet?

Solution:

(a) (2 points) Any point on the line passing through the two points.
(b) (2 points) Any point on the line/plane determined by the three points
(c) (2 points) On a line/plane determined by the three points.
2. (8 points) Which rows or columns or matrices do you multiply to find
(a) (2 points) the entry in row 3 , column 4 of $A B$?
(b) (2 points) the third column of $A B$?
(c) (4 points) the entry in row 1 , column 1 of $C D E$?

Solution:

(a) (2 points) The third row of A and the fourth column of B
(b) (2 points) A and the third column of B
(c) (2 points) The first row of C, D, and the first column of E
3. (6 points) Which numbers a and b lead to row exchange? Which make the matrix singular?

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
a & 6 & 3 \\
0 & b & 6
\end{array}\right]
$$

Solution:

$$
E_{21} A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 6-2 a & 3-3 a \\
0 & b & 6
\end{array}\right]
$$

$a=3$ and $b \neq 0$ lead to rwo exchange. The numbers with $a b-4 a-b+12=0$ make the matrix singular.

