Engineering Mathematics I

Midterm Exam, October 25, 2017

Problem	Score
1	
2	
3	
4	
5	
Total	

Name: \qquad

ID No: \qquad
Dept: \qquad
E-mail: \qquad

1. (20 points) Some diseases are spread largely by carriers, individuals who can transmit the disease but who exhibit no overt symptoms. Let x and y, respectively, denote the proportion of susceptibles and carriers in the population. Suppose that carriers are identified and removed from the population at a rate β, so

$$
\begin{equation*}
d y / d t=-\beta y \tag{1}
\end{equation*}
$$

Suppose also that the disease spreads at a rate proportional to the product of x and y, thus

$$
\begin{equation*}
d x / d t=-\alpha x y \tag{2}
\end{equation*}
$$

(a) (5 points) Determine y at any time t by solving Eq (1) subject to the initial condition $y(0)=y_{0}$.
(b) (10 points) Use the result of part (a) to find x at any time t by solving Eq (2) subject to the initial condition $x(0)=x_{0}$.
(c) (5 points) Find the proportion of the population that escapes the epidemic by finding the limiting value of x as $t \rightarrow \infty$.
2. (20 points) Solve the following initial value problem (without using Laplace transforms):

$$
\begin{array}{rll}
y_{1}^{\prime} & =2 y_{1}+2 e^{2 t}, & y_{1}(0)=2, \\
y_{2}^{\prime} & =3 y_{1}+2 y_{2}+3 e^{2 t}, & y_{2}(0)=3 .
\end{array}
$$

3. (20 points) Solve the following initial value problem by the power series method

$$
y^{\prime \prime}+x^{2} y^{\prime}+2 x y=0, \quad y(0)=1, y^{\prime}(0)=0 .
$$

4. (20 points) Using Laplace transforms, solve the following system of differential equations

$$
\begin{array}{rll}
y_{1}^{\prime} & =2 y_{1}+2 e^{2 t}, & y_{1}(0)=2, \\
y_{2}^{\prime} & =3 y_{1}+2 y_{2}+3 e^{2 t}, & y_{2}(0)=3 .
\end{array}
$$

5. (20 points) Prove that $(f * g) * h=f *(g * h)$.
