Engineering Mathematics I

Midterm Exam, October 23, 2018

Problem	Score
1	
2	
3	
4	
5	
Total	

Name: \qquad

ID No: \qquad
Dept: \qquad
E-mail: \qquad

1. (15 points) Suppose that a sum S_{0} is invested at an annual rate of return r compounded continuously.
(a) (10 points) Find the time T required for the original sum to double in value as a function of r.
(b) (5 points) Find the return rate r if the initial investment is to double in 8 years.
2. (20 points) Solve the following initial value problem

$$
y^{\prime \prime}-y=4 \sinh x, \quad y(0)=2, \quad y^{\prime}(0)=2 .
$$

3. (20 points) Solve the following initial value problem

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=x^{2} \ln x, \quad y(1)=1, \quad y^{\prime}(1)=0 .
$$

4. (30 points) Find the Laplace transforms of the following periodic functions
(a) (15 points) $f(t)=t, 0 \leq t<1 ; f(t+1)=f(t)$
(b) (15 points) $f(t)=\sin t, 0 \leq t<\pi ; f(t+\pi)=f(t)$
5. (15 points)
(a) (10 points) If $f(t)=t^{m}$ and $g(t)=t^{n}$, where m and n are positive integers, show that

$$
f * g=t^{m+n-1} \int_{0}^{1} u^{m}(1-u)^{n} d u
$$

(b) (5 points) Use the convolution theorem to show that

$$
\int_{0}^{1} u^{m}(1-u)^{n} d u=\frac{m!n!}{(m+n+1)!}
$$

